Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+3x=-\frac{17}{3}
Divide both sides by 3.
4x^{2}+3x+\frac{17}{3}=0
Add \frac{17}{3} to both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 4\times \frac{17}{3}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 3 for b, and \frac{17}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\times \frac{17}{3}}}{2\times 4}
Square 3.
x=\frac{-3±\sqrt{9-16\times \frac{17}{3}}}{2\times 4}
Multiply -4 times 4.
x=\frac{-3±\sqrt{9-\frac{272}{3}}}{2\times 4}
Multiply -16 times \frac{17}{3}.
x=\frac{-3±\sqrt{-\frac{245}{3}}}{2\times 4}
Add 9 to -\frac{272}{3}.
x=\frac{-3±\frac{7\sqrt{15}i}{3}}{2\times 4}
Take the square root of -\frac{245}{3}.
x=\frac{-3±\frac{7\sqrt{15}i}{3}}{8}
Multiply 2 times 4.
x=\frac{\frac{7\sqrt{15}i}{3}-3}{8}
Now solve the equation x=\frac{-3±\frac{7\sqrt{15}i}{3}}{8} when ± is plus. Add -3 to \frac{7i\sqrt{15}}{3}.
x=\frac{7\sqrt{15}i}{24}-\frac{3}{8}
Divide -3+\frac{7i\sqrt{15}}{3} by 8.
x=\frac{-\frac{7\sqrt{15}i}{3}-3}{8}
Now solve the equation x=\frac{-3±\frac{7\sqrt{15}i}{3}}{8} when ± is minus. Subtract \frac{7i\sqrt{15}}{3} from -3.
x=-\frac{7\sqrt{15}i}{24}-\frac{3}{8}
Divide -3-\frac{7i\sqrt{15}}{3} by 8.
x=\frac{7\sqrt{15}i}{24}-\frac{3}{8} x=-\frac{7\sqrt{15}i}{24}-\frac{3}{8}
The equation is now solved.
4x^{2}+3x=-\frac{17}{3}
Divide both sides by 3.
\frac{4x^{2}+3x}{4}=-\frac{\frac{17}{3}}{4}
Divide both sides by 4.
x^{2}+\frac{3}{4}x=-\frac{\frac{17}{3}}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{3}{4}x=-\frac{17}{12}
Divide -\frac{17}{3} by 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=-\frac{17}{12}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{17}{12}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{245}{192}
Add -\frac{17}{12} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=-\frac{245}{192}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{-\frac{245}{192}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{7\sqrt{15}i}{24} x+\frac{3}{8}=-\frac{7\sqrt{15}i}{24}
Simplify.
x=\frac{7\sqrt{15}i}{24}-\frac{3}{8} x=-\frac{7\sqrt{15}i}{24}-\frac{3}{8}
Subtract \frac{3}{8} from both sides of the equation.