Solve for x
x=-11
x=2
Graph
Share
Copied to clipboard
9x-6=\left(4-x\right)\left(4+x\right)
Use the distributive property to multiply 3 by 3x-2.
9x-6=16-x^{2}
Consider \left(4-x\right)\left(4+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
9x-6-16=-x^{2}
Subtract 16 from both sides.
9x-22=-x^{2}
Subtract 16 from -6 to get -22.
9x-22+x^{2}=0
Add x^{2} to both sides.
x^{2}+9x-22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-22\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-22\right)}}{2}
Square 9.
x=\frac{-9±\sqrt{81+88}}{2}
Multiply -4 times -22.
x=\frac{-9±\sqrt{169}}{2}
Add 81 to 88.
x=\frac{-9±13}{2}
Take the square root of 169.
x=\frac{4}{2}
Now solve the equation x=\frac{-9±13}{2} when ± is plus. Add -9 to 13.
x=2
Divide 4 by 2.
x=-\frac{22}{2}
Now solve the equation x=\frac{-9±13}{2} when ± is minus. Subtract 13 from -9.
x=-11
Divide -22 by 2.
x=2 x=-11
The equation is now solved.
9x-6=\left(4-x\right)\left(4+x\right)
Use the distributive property to multiply 3 by 3x-2.
9x-6=16-x^{2}
Consider \left(4-x\right)\left(4+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
9x-6+x^{2}=16
Add x^{2} to both sides.
9x+x^{2}=16+6
Add 6 to both sides.
9x+x^{2}=22
Add 16 and 6 to get 22.
x^{2}+9x=22
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=22+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=22+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{169}{4}
Add 22 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{13}{2} x+\frac{9}{2}=-\frac{13}{2}
Simplify.
x=2 x=-11
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}