Solve for x
x\geq \frac{68}{13}
Graph
Share
Copied to clipboard
9x+15-5\left(2x-8\right)\leq 3\left(4x+1\right)-16
Use the distributive property to multiply 3 by 3x+5.
9x+15-10x+40\leq 3\left(4x+1\right)-16
Use the distributive property to multiply -5 by 2x-8.
-x+15+40\leq 3\left(4x+1\right)-16
Combine 9x and -10x to get -x.
-x+55\leq 3\left(4x+1\right)-16
Add 15 and 40 to get 55.
-x+55\leq 12x+3-16
Use the distributive property to multiply 3 by 4x+1.
-x+55\leq 12x-13
Subtract 16 from 3 to get -13.
-x+55-12x\leq -13
Subtract 12x from both sides.
-13x+55\leq -13
Combine -x and -12x to get -13x.
-13x\leq -13-55
Subtract 55 from both sides.
-13x\leq -68
Subtract 55 from -13 to get -68.
x\geq \frac{-68}{-13}
Divide both sides by -13. Since -13 is negative, the inequality direction is changed.
x\geq \frac{68}{13}
Fraction \frac{-68}{-13} can be simplified to \frac{68}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}