Evaluate
\frac{222}{25}-\frac{404}{25}i=8.88-16.16i
Real Part
\frac{222}{25} = 8\frac{22}{25} = 8.88
Share
Copied to clipboard
3\times 3+3\times \left(-5i\right)+\frac{3-5i}{4+3i}
Multiply 3 times 3-5i.
9-15i+\frac{3-5i}{4+3i}
Do the multiplications in 3\times 3+3\times \left(-5i\right).
9-15i+\frac{\left(3-5i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
Multiply both numerator and denominator of \frac{3-5i}{4+3i} by the complex conjugate of the denominator, 4-3i.
9-15i+\frac{\left(3-5i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
9-15i+\frac{\left(3-5i\right)\left(4-3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
9-15i+\frac{3\times 4+3\times \left(-3i\right)-5i\times 4-5\left(-3\right)i^{2}}{25}
Multiply complex numbers 3-5i and 4-3i like you multiply binomials.
9-15i+\frac{3\times 4+3\times \left(-3i\right)-5i\times 4-5\left(-3\right)\left(-1\right)}{25}
By definition, i^{2} is -1.
9-15i+\frac{12-9i-20i-15}{25}
Do the multiplications in 3\times 4+3\times \left(-3i\right)-5i\times 4-5\left(-3\right)\left(-1\right).
9-15i+\frac{12-15+\left(-9-20\right)i}{25}
Combine the real and imaginary parts in 12-9i-20i-15.
9-15i+\frac{-3-29i}{25}
Do the additions in 12-15+\left(-9-20\right)i.
9-15i+\left(-\frac{3}{25}-\frac{29}{25}i\right)
Divide -3-29i by 25 to get -\frac{3}{25}-\frac{29}{25}i.
9-\frac{3}{25}+\left(-15-\frac{29}{25}\right)i
Combine the real and imaginary parts.
\frac{222}{25}-\frac{404}{25}i
Do the additions.
Re(3\times 3+3\times \left(-5i\right)+\frac{3-5i}{4+3i})
Multiply 3 times 3-5i.
Re(9-15i+\frac{3-5i}{4+3i})
Do the multiplications in 3\times 3+3\times \left(-5i\right).
Re(9-15i+\frac{\left(3-5i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)})
Multiply both numerator and denominator of \frac{3-5i}{4+3i} by the complex conjugate of the denominator, 4-3i.
Re(9-15i+\frac{\left(3-5i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(9-15i+\frac{\left(3-5i\right)\left(4-3i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(9-15i+\frac{3\times 4+3\times \left(-3i\right)-5i\times 4-5\left(-3\right)i^{2}}{25})
Multiply complex numbers 3-5i and 4-3i like you multiply binomials.
Re(9-15i+\frac{3\times 4+3\times \left(-3i\right)-5i\times 4-5\left(-3\right)\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(9-15i+\frac{12-9i-20i-15}{25})
Do the multiplications in 3\times 4+3\times \left(-3i\right)-5i\times 4-5\left(-3\right)\left(-1\right).
Re(9-15i+\frac{12-15+\left(-9-20\right)i}{25})
Combine the real and imaginary parts in 12-9i-20i-15.
Re(9-15i+\frac{-3-29i}{25})
Do the additions in 12-15+\left(-9-20\right)i.
Re(9-15i+\left(-\frac{3}{25}-\frac{29}{25}i\right))
Divide -3-29i by 25 to get -\frac{3}{25}-\frac{29}{25}i.
Re(9-\frac{3}{25}+\left(-15-\frac{29}{25}\right)i)
Combine the real and imaginary parts in 9-15i+\left(-\frac{3}{25}-\frac{29}{25}i\right).
Re(\frac{222}{25}-\frac{404}{25}i)
Do the additions in 9-\frac{3}{25}+\left(-15-\frac{29}{25}\right)i.
\frac{222}{25}
The real part of \frac{222}{25}-\frac{404}{25}i is \frac{222}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}