Solve for x
x = \frac{3 \sqrt{2} + 3}{2} \approx 3.621320344
x=\frac{3-3\sqrt{2}}{2}\approx -0.621320344
Graph
Share
Copied to clipboard
\frac{3\left(2x-3\right)^{2}}{3}=\frac{54}{3}
Divide both sides by 3.
\left(2x-3\right)^{2}=\frac{54}{3}
Dividing by 3 undoes the multiplication by 3.
\left(2x-3\right)^{2}=18
Divide 54 by 3.
2x-3=3\sqrt{2} 2x-3=-3\sqrt{2}
Take the square root of both sides of the equation.
2x-3-\left(-3\right)=3\sqrt{2}-\left(-3\right) 2x-3-\left(-3\right)=-3\sqrt{2}-\left(-3\right)
Add 3 to both sides of the equation.
2x=3\sqrt{2}-\left(-3\right) 2x=-3\sqrt{2}-\left(-3\right)
Subtracting -3 from itself leaves 0.
2x=3\sqrt{2}+3
Subtract -3 from 3\sqrt{2}.
2x=3-3\sqrt{2}
Subtract -3 from -3\sqrt{2}.
\frac{2x}{2}=\frac{3\sqrt{2}+3}{2} \frac{2x}{2}=\frac{3-3\sqrt{2}}{2}
Divide both sides by 2.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}