Solve for m (complex solution)
\left\{\begin{matrix}\\m=2x\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&x=-\frac{2n}{3}\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}\\n=-\frac{3x}{2}\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&x=\frac{m}{2}\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=2x\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&x=-\frac{2n}{3}\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=-\frac{3x}{2}\text{, }&\text{unconditionally}\\n\in \mathrm{R}\text{, }&x=\frac{m}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
6x^{2}-3xm+4nx-2mn=0
Use the distributive property to multiply 3 by 2x^{2}-mx.
-3xm+4nx-2mn=-6x^{2}
Subtract 6x^{2} from both sides. Anything subtracted from zero gives its negation.
-3xm-2mn=-6x^{2}-4nx
Subtract 4nx from both sides.
\left(-3x-2n\right)m=-6x^{2}-4nx
Combine all terms containing m.
\frac{\left(-3x-2n\right)m}{-3x-2n}=-\frac{2x\left(3x+2n\right)}{-3x-2n}
Divide both sides by -3x-2n.
m=-\frac{2x\left(3x+2n\right)}{-3x-2n}
Dividing by -3x-2n undoes the multiplication by -3x-2n.
m=2x
Divide -2x\left(3x+2n\right) by -3x-2n.
6x^{2}-3mx+4nx-2mn=0
Use the distributive property to multiply 3 by 2x^{2}-mx.
-3mx+4nx-2mn=-6x^{2}
Subtract 6x^{2} from both sides. Anything subtracted from zero gives its negation.
4nx-2mn=-6x^{2}+3mx
Add 3mx to both sides.
\left(4x-2m\right)n=-6x^{2}+3mx
Combine all terms containing n.
\left(4x-2m\right)n=3mx-6x^{2}
The equation is in standard form.
\frac{\left(4x-2m\right)n}{4x-2m}=\frac{3x\left(m-2x\right)}{4x-2m}
Divide both sides by 4x-2m.
n=\frac{3x\left(m-2x\right)}{4x-2m}
Dividing by 4x-2m undoes the multiplication by 4x-2m.
n=-\frac{3x}{2}
Divide 3x\left(-2x+m\right) by 4x-2m.
6x^{2}-3xm+4nx-2mn=0
Use the distributive property to multiply 3 by 2x^{2}-mx.
-3xm+4nx-2mn=-6x^{2}
Subtract 6x^{2} from both sides. Anything subtracted from zero gives its negation.
-3xm-2mn=-6x^{2}-4nx
Subtract 4nx from both sides.
\left(-3x-2n\right)m=-6x^{2}-4nx
Combine all terms containing m.
\frac{\left(-3x-2n\right)m}{-3x-2n}=-\frac{2x\left(3x+2n\right)}{-3x-2n}
Divide both sides by -3x-2n.
m=-\frac{2x\left(3x+2n\right)}{-3x-2n}
Dividing by -3x-2n undoes the multiplication by -3x-2n.
m=2x
Divide -2x\left(3x+2n\right) by -3x-2n.
6x^{2}-3mx+4nx-2mn=0
Use the distributive property to multiply 3 by 2x^{2}-mx.
-3mx+4nx-2mn=-6x^{2}
Subtract 6x^{2} from both sides. Anything subtracted from zero gives its negation.
4nx-2mn=-6x^{2}+3mx
Add 3mx to both sides.
\left(4x-2m\right)n=-6x^{2}+3mx
Combine all terms containing n.
\left(4x-2m\right)n=3mx-6x^{2}
The equation is in standard form.
\frac{\left(4x-2m\right)n}{4x-2m}=\frac{3x\left(m-2x\right)}{4x-2m}
Divide both sides by 4x-2m.
n=\frac{3x\left(m-2x\right)}{4x-2m}
Dividing by 4x-2m undoes the multiplication by 4x-2m.
n=-\frac{3x}{2}
Divide 3x\left(-2x+m\right) by 4x-2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}