Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(4x^{2}+28x+49\right)=4\left(2x+7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
12x^{2}+84x+147=4\left(2x+7\right)
Use the distributive property to multiply 3 by 4x^{2}+28x+49.
12x^{2}+84x+147=8x+28
Use the distributive property to multiply 4 by 2x+7.
12x^{2}+84x+147-8x=28
Subtract 8x from both sides.
12x^{2}+76x+147=28
Combine 84x and -8x to get 76x.
12x^{2}+76x+147-28=0
Subtract 28 from both sides.
12x^{2}+76x+119=0
Subtract 28 from 147 to get 119.
x=\frac{-76±\sqrt{76^{2}-4\times 12\times 119}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 76 for b, and 119 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-76±\sqrt{5776-4\times 12\times 119}}{2\times 12}
Square 76.
x=\frac{-76±\sqrt{5776-48\times 119}}{2\times 12}
Multiply -4 times 12.
x=\frac{-76±\sqrt{5776-5712}}{2\times 12}
Multiply -48 times 119.
x=\frac{-76±\sqrt{64}}{2\times 12}
Add 5776 to -5712.
x=\frac{-76±8}{2\times 12}
Take the square root of 64.
x=\frac{-76±8}{24}
Multiply 2 times 12.
x=-\frac{68}{24}
Now solve the equation x=\frac{-76±8}{24} when ± is plus. Add -76 to 8.
x=-\frac{17}{6}
Reduce the fraction \frac{-68}{24} to lowest terms by extracting and canceling out 4.
x=-\frac{84}{24}
Now solve the equation x=\frac{-76±8}{24} when ± is minus. Subtract 8 from -76.
x=-\frac{7}{2}
Reduce the fraction \frac{-84}{24} to lowest terms by extracting and canceling out 12.
x=-\frac{17}{6} x=-\frac{7}{2}
The equation is now solved.
3\left(4x^{2}+28x+49\right)=4\left(2x+7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
12x^{2}+84x+147=4\left(2x+7\right)
Use the distributive property to multiply 3 by 4x^{2}+28x+49.
12x^{2}+84x+147=8x+28
Use the distributive property to multiply 4 by 2x+7.
12x^{2}+84x+147-8x=28
Subtract 8x from both sides.
12x^{2}+76x+147=28
Combine 84x and -8x to get 76x.
12x^{2}+76x=28-147
Subtract 147 from both sides.
12x^{2}+76x=-119
Subtract 147 from 28 to get -119.
\frac{12x^{2}+76x}{12}=-\frac{119}{12}
Divide both sides by 12.
x^{2}+\frac{76}{12}x=-\frac{119}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{19}{3}x=-\frac{119}{12}
Reduce the fraction \frac{76}{12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{19}{3}x+\left(\frac{19}{6}\right)^{2}=-\frac{119}{12}+\left(\frac{19}{6}\right)^{2}
Divide \frac{19}{3}, the coefficient of the x term, by 2 to get \frac{19}{6}. Then add the square of \frac{19}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{3}x+\frac{361}{36}=-\frac{119}{12}+\frac{361}{36}
Square \frac{19}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{1}{9}
Add -\frac{119}{12} to \frac{361}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{6}\right)^{2}=\frac{1}{9}
Factor x^{2}+\frac{19}{3}x+\frac{361}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{6}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x+\frac{19}{6}=\frac{1}{3} x+\frac{19}{6}=-\frac{1}{3}
Simplify.
x=-\frac{17}{6} x=-\frac{7}{2}
Subtract \frac{19}{6} from both sides of the equation.