Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\left(6x+3\right)\left(-x+3\right)-\left(2x+5\right)^{2}=-\left(-\left(-3\left(x+5\right)\right)+10x^{2}\right)
Use the distributive property to multiply 3 by 2x+1.
6x\left(-x\right)+18x+3\left(-x\right)+9-\left(2x+5\right)^{2}=-\left(-\left(-3\left(x+5\right)\right)+10x^{2}\right)
Use the distributive property to multiply 6x+3 by -x+3.
6x\left(-x\right)+18x+3\left(-x\right)+9-\left(4x^{2}+20x+25\right)=-\left(-\left(-3\left(x+5\right)\right)+10x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+5\right)^{2}.
6x\left(-x\right)+18x+3\left(-x\right)+9-4x^{2}-20x-25=-\left(-\left(-3\left(x+5\right)\right)+10x^{2}\right)
To find the opposite of 4x^{2}+20x+25, find the opposite of each term.
6x\left(-x\right)-2x+3\left(-x\right)+9-4x^{2}-25=-\left(-\left(-3\left(x+5\right)\right)+10x^{2}\right)
Combine 18x and -20x to get -2x.
6x\left(-x\right)-2x+3\left(-x\right)-16-4x^{2}=-\left(-\left(-3\left(x+5\right)\right)+10x^{2}\right)
Subtract 25 from 9 to get -16.
6x\left(-x\right)-2x+3\left(-x\right)-16-4x^{2}=-\left(-\left(-3x-15\right)+10x^{2}\right)
Use the distributive property to multiply -3 by x+5.
6x\left(-x\right)-2x+3\left(-x\right)-16-4x^{2}=-\left(3x+15+10x^{2}\right)
To find the opposite of -3x-15, find the opposite of each term.
6x\left(-x\right)-2x+3\left(-x\right)-16-4x^{2}=-3x-15-10x^{2}
To find the opposite of 3x+15+10x^{2}, find the opposite of each term.
6x\left(-x\right)-2x+3\left(-x\right)-16-4x^{2}+3x=-15-10x^{2}
Add 3x to both sides.
6x\left(-x\right)+x+3\left(-x\right)-16-4x^{2}=-15-10x^{2}
Combine -2x and 3x to get x.
6x\left(-x\right)+x+3\left(-x\right)-16-4x^{2}+10x^{2}=-15
Add 10x^{2} to both sides.
6x\left(-x\right)+x+3\left(-x\right)-16+6x^{2}=-15
Combine -4x^{2} and 10x^{2} to get 6x^{2}.
6x\left(-x\right)+x+3\left(-x\right)+6x^{2}=-15+16
Add 16 to both sides.
6x\left(-x\right)+x+3\left(-x\right)+6x^{2}=1
Add -15 and 16 to get 1.
-6xx+x+3\left(-1\right)x+6x^{2}=1
Multiply 6 and -1 to get -6.
-6x^{2}+x+3\left(-1\right)x+6x^{2}=1
Multiply x and x to get x^{2}.
-6x^{2}+x-3x+6x^{2}=1
Multiply 3 and -1 to get -3.
-6x^{2}-2x+6x^{2}=1
Combine x and -3x to get -2x.
-2x=1
Combine -6x^{2} and 6x^{2} to get 0.
x=\frac{1}{-2}
Divide both sides by -2.
x=-\frac{1}{2}
Fraction \frac{1}{-2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}