Solve for x
x=-2
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
3\left(4x^{2}+4x+1\right)+10\left(2x+1\right)+3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
12x^{2}+12x+3+10\left(2x+1\right)+3=0
Use the distributive property to multiply 3 by 4x^{2}+4x+1.
12x^{2}+12x+3+20x+10+3=0
Use the distributive property to multiply 10 by 2x+1.
12x^{2}+32x+3+10+3=0
Combine 12x and 20x to get 32x.
12x^{2}+32x+13+3=0
Add 3 and 10 to get 13.
12x^{2}+32x+16=0
Add 13 and 3 to get 16.
3x^{2}+8x+4=0
Divide both sides by 4.
a+b=8 ab=3\times 4=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=2 b=6
The solution is the pair that gives sum 8.
\left(3x^{2}+2x\right)+\left(6x+4\right)
Rewrite 3x^{2}+8x+4 as \left(3x^{2}+2x\right)+\left(6x+4\right).
x\left(3x+2\right)+2\left(3x+2\right)
Factor out x in the first and 2 in the second group.
\left(3x+2\right)\left(x+2\right)
Factor out common term 3x+2 by using distributive property.
x=-\frac{2}{3} x=-2
To find equation solutions, solve 3x+2=0 and x+2=0.
3\left(4x^{2}+4x+1\right)+10\left(2x+1\right)+3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
12x^{2}+12x+3+10\left(2x+1\right)+3=0
Use the distributive property to multiply 3 by 4x^{2}+4x+1.
12x^{2}+12x+3+20x+10+3=0
Use the distributive property to multiply 10 by 2x+1.
12x^{2}+32x+3+10+3=0
Combine 12x and 20x to get 32x.
12x^{2}+32x+13+3=0
Add 3 and 10 to get 13.
12x^{2}+32x+16=0
Add 13 and 3 to get 16.
x=\frac{-32±\sqrt{32^{2}-4\times 12\times 16}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 32 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 12\times 16}}{2\times 12}
Square 32.
x=\frac{-32±\sqrt{1024-48\times 16}}{2\times 12}
Multiply -4 times 12.
x=\frac{-32±\sqrt{1024-768}}{2\times 12}
Multiply -48 times 16.
x=\frac{-32±\sqrt{256}}{2\times 12}
Add 1024 to -768.
x=\frac{-32±16}{2\times 12}
Take the square root of 256.
x=\frac{-32±16}{24}
Multiply 2 times 12.
x=-\frac{16}{24}
Now solve the equation x=\frac{-32±16}{24} when ± is plus. Add -32 to 16.
x=-\frac{2}{3}
Reduce the fraction \frac{-16}{24} to lowest terms by extracting and canceling out 8.
x=-\frac{48}{24}
Now solve the equation x=\frac{-32±16}{24} when ± is minus. Subtract 16 from -32.
x=-2
Divide -48 by 24.
x=-\frac{2}{3} x=-2
The equation is now solved.
3\left(4x^{2}+4x+1\right)+10\left(2x+1\right)+3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
12x^{2}+12x+3+10\left(2x+1\right)+3=0
Use the distributive property to multiply 3 by 4x^{2}+4x+1.
12x^{2}+12x+3+20x+10+3=0
Use the distributive property to multiply 10 by 2x+1.
12x^{2}+32x+3+10+3=0
Combine 12x and 20x to get 32x.
12x^{2}+32x+13+3=0
Add 3 and 10 to get 13.
12x^{2}+32x+16=0
Add 13 and 3 to get 16.
12x^{2}+32x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{12x^{2}+32x}{12}=-\frac{16}{12}
Divide both sides by 12.
x^{2}+\frac{32}{12}x=-\frac{16}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{8}{3}x=-\frac{16}{12}
Reduce the fraction \frac{32}{12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
Reduce the fraction \frac{-16}{12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Add -\frac{4}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
Simplify.
x=-\frac{2}{3} x=-2
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}