Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6a-3\right)x^{2}-2\left(a+1\right)x+1=0
Use the distributive property to multiply 3 by 2a-1.
6ax^{2}-3x^{2}-2\left(a+1\right)x+1=0
Use the distributive property to multiply 6a-3 by x^{2}.
6ax^{2}-3x^{2}-2\left(a+1\right)x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
6ax^{2}-3x^{2}+\left(-2a-2\right)x=-1
Use the distributive property to multiply -2 by a+1.
6ax^{2}-3x^{2}-2ax-2x=-1
Use the distributive property to multiply -2a-2 by x.
6ax^{2}-2ax-2x=-1+3x^{2}
Add 3x^{2} to both sides.
6ax^{2}-2ax=-1+3x^{2}+2x
Add 2x to both sides.
\left(6x^{2}-2x\right)a=-1+3x^{2}+2x
Combine all terms containing a.
\left(6x^{2}-2x\right)a=3x^{2}+2x-1
The equation is in standard form.
\frac{\left(6x^{2}-2x\right)a}{6x^{2}-2x}=\frac{\left(3x-1\right)\left(x+1\right)}{6x^{2}-2x}
Divide both sides by 6x^{2}-2x.
a=\frac{\left(3x-1\right)\left(x+1\right)}{6x^{2}-2x}
Dividing by 6x^{2}-2x undoes the multiplication by 6x^{2}-2x.
a=\frac{1}{2}+\frac{1}{2x}
Divide \left(-1+3x\right)\left(1+x\right) by 6x^{2}-2x.
\left(6a-3\right)x^{2}-2\left(a+1\right)x+1=0
Use the distributive property to multiply 3 by 2a-1.
6ax^{2}-3x^{2}-2\left(a+1\right)x+1=0
Use the distributive property to multiply 6a-3 by x^{2}.
6ax^{2}-3x^{2}-2\left(a+1\right)x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
6ax^{2}-3x^{2}+\left(-2a-2\right)x=-1
Use the distributive property to multiply -2 by a+1.
6ax^{2}-3x^{2}-2ax-2x=-1
Use the distributive property to multiply -2a-2 by x.
6ax^{2}-2ax-2x=-1+3x^{2}
Add 3x^{2} to both sides.
6ax^{2}-2ax=-1+3x^{2}+2x
Add 2x to both sides.
\left(6x^{2}-2x\right)a=-1+3x^{2}+2x
Combine all terms containing a.
\left(6x^{2}-2x\right)a=3x^{2}+2x-1
The equation is in standard form.
\frac{\left(6x^{2}-2x\right)a}{6x^{2}-2x}=\frac{\left(3x-1\right)\left(x+1\right)}{6x^{2}-2x}
Divide both sides by 6x^{2}-2x.
a=\frac{\left(3x-1\right)\left(x+1\right)}{6x^{2}-2x}
Dividing by 6x^{2}-2x undoes the multiplication by 6x^{2}-2x.
a=\frac{1}{2}+\frac{1}{2x}
Divide \left(-1+3x\right)\left(1+x\right) by 6x^{2}-2x.