Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

36x+39=2\left(x+5\right)\left(2x-5\right)
Use the distributive property to multiply 3 by 12x+13.
36x+39=\left(2x+10\right)\left(2x-5\right)
Use the distributive property to multiply 2 by x+5.
36x+39=4x^{2}+10x-50
Use the distributive property to multiply 2x+10 by 2x-5 and combine like terms.
36x+39-4x^{2}=10x-50
Subtract 4x^{2} from both sides.
36x+39-4x^{2}-10x=-50
Subtract 10x from both sides.
26x+39-4x^{2}=-50
Combine 36x and -10x to get 26x.
26x+39-4x^{2}+50=0
Add 50 to both sides.
26x+89-4x^{2}=0
Add 39 and 50 to get 89.
-4x^{2}+26x+89=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{26^{2}-4\left(-4\right)\times 89}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 26 for b, and 89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\left(-4\right)\times 89}}{2\left(-4\right)}
Square 26.
x=\frac{-26±\sqrt{676+16\times 89}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-26±\sqrt{676+1424}}{2\left(-4\right)}
Multiply 16 times 89.
x=\frac{-26±\sqrt{2100}}{2\left(-4\right)}
Add 676 to 1424.
x=\frac{-26±10\sqrt{21}}{2\left(-4\right)}
Take the square root of 2100.
x=\frac{-26±10\sqrt{21}}{-8}
Multiply 2 times -4.
x=\frac{10\sqrt{21}-26}{-8}
Now solve the equation x=\frac{-26±10\sqrt{21}}{-8} when ± is plus. Add -26 to 10\sqrt{21}.
x=\frac{13-5\sqrt{21}}{4}
Divide -26+10\sqrt{21} by -8.
x=\frac{-10\sqrt{21}-26}{-8}
Now solve the equation x=\frac{-26±10\sqrt{21}}{-8} when ± is minus. Subtract 10\sqrt{21} from -26.
x=\frac{5\sqrt{21}+13}{4}
Divide -26-10\sqrt{21} by -8.
x=\frac{13-5\sqrt{21}}{4} x=\frac{5\sqrt{21}+13}{4}
The equation is now solved.
36x+39=2\left(x+5\right)\left(2x-5\right)
Use the distributive property to multiply 3 by 12x+13.
36x+39=\left(2x+10\right)\left(2x-5\right)
Use the distributive property to multiply 2 by x+5.
36x+39=4x^{2}+10x-50
Use the distributive property to multiply 2x+10 by 2x-5 and combine like terms.
36x+39-4x^{2}=10x-50
Subtract 4x^{2} from both sides.
36x+39-4x^{2}-10x=-50
Subtract 10x from both sides.
26x+39-4x^{2}=-50
Combine 36x and -10x to get 26x.
26x-4x^{2}=-50-39
Subtract 39 from both sides.
26x-4x^{2}=-89
Subtract 39 from -50 to get -89.
-4x^{2}+26x=-89
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+26x}{-4}=-\frac{89}{-4}
Divide both sides by -4.
x^{2}+\frac{26}{-4}x=-\frac{89}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{13}{2}x=-\frac{89}{-4}
Reduce the fraction \frac{26}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{2}x=\frac{89}{4}
Divide -89 by -4.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\frac{89}{4}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{89}{4}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{525}{16}
Add \frac{89}{4} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=\frac{525}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{525}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{5\sqrt{21}}{4} x-\frac{13}{4}=-\frac{5\sqrt{21}}{4}
Simplify.
x=\frac{5\sqrt{21}+13}{4} x=\frac{13-5\sqrt{21}}{4}
Add \frac{13}{4} to both sides of the equation.