Solve for a
a=\frac{9c}{25}-\frac{b}{10}
Solve for b
b=\frac{18c}{5}-10a
Share
Copied to clipboard
300a+30b+3c=111c
Use the distributive property to multiply 3 by 100a+10b+c.
300a+3c=111c-30b
Subtract 30b from both sides.
300a=111c-30b-3c
Subtract 3c from both sides.
300a=108c-30b
Combine 111c and -3c to get 108c.
\frac{300a}{300}=\frac{108c-30b}{300}
Divide both sides by 300.
a=\frac{108c-30b}{300}
Dividing by 300 undoes the multiplication by 300.
a=\frac{9c}{25}-\frac{b}{10}
Divide 108c-30b by 300.
300a+30b+3c=111c
Use the distributive property to multiply 3 by 100a+10b+c.
30b+3c=111c-300a
Subtract 300a from both sides.
30b=111c-300a-3c
Subtract 3c from both sides.
30b=108c-300a
Combine 111c and -3c to get 108c.
\frac{30b}{30}=\frac{108c-300a}{30}
Divide both sides by 30.
b=\frac{108c-300a}{30}
Dividing by 30 undoes the multiplication by 30.
b=\frac{18c}{5}-10a
Divide 108c-300a by 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}