Solve for x
x=y+1
Solve for y
y=x-1
Graph
Share
Copied to clipboard
-12x+48=36-12y
Use the distributive property to multiply 3 by -4x+16.
-12x=36-12y-48
Subtract 48 from both sides.
-12x=-12-12y
Subtract 48 from 36 to get -12.
-12x=-12y-12
The equation is in standard form.
\frac{-12x}{-12}=\frac{-12y-12}{-12}
Divide both sides by -12.
x=\frac{-12y-12}{-12}
Dividing by -12 undoes the multiplication by -12.
x=y+1
Divide -12-12y by -12.
-12x+48=36-12y
Use the distributive property to multiply 3 by -4x+16.
36-12y=-12x+48
Swap sides so that all variable terms are on the left hand side.
-12y=-12x+48-36
Subtract 36 from both sides.
-12y=-12x+12
Subtract 36 from 48 to get 12.
-12y=12-12x
The equation is in standard form.
\frac{-12y}{-12}=\frac{12-12x}{-12}
Divide both sides by -12.
y=\frac{12-12x}{-12}
Dividing by -12 undoes the multiplication by -12.
y=x-1
Divide 12-12x by -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}