Solve for x
x=1
x=-5
Graph
Share
Copied to clipboard
3\left(\frac{4}{9}x^{2}-\frac{8}{9}x+\frac{4}{9}\right)=3x^{2}+4x-7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{3}x-\frac{2}{3}\right)^{2}.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}=3x^{2}+4x-7
Use the distributive property to multiply 3 by \frac{4}{9}x^{2}-\frac{8}{9}x+\frac{4}{9}.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}-3x^{2}=4x-7
Subtract 3x^{2} from both sides.
-\frac{5}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}=4x-7
Combine \frac{4}{3}x^{2} and -3x^{2} to get -\frac{5}{3}x^{2}.
-\frac{5}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}-4x=-7
Subtract 4x from both sides.
-\frac{5}{3}x^{2}-\frac{20}{3}x+\frac{4}{3}=-7
Combine -\frac{8}{3}x and -4x to get -\frac{20}{3}x.
-\frac{5}{3}x^{2}-\frac{20}{3}x+\frac{4}{3}+7=0
Add 7 to both sides.
-\frac{5}{3}x^{2}-\frac{20}{3}x+\frac{25}{3}=0
Add \frac{4}{3} and 7 to get \frac{25}{3}.
x=\frac{-\left(-\frac{20}{3}\right)±\sqrt{\left(-\frac{20}{3}\right)^{2}-4\left(-\frac{5}{3}\right)\times \frac{25}{3}}}{2\left(-\frac{5}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5}{3} for a, -\frac{20}{3} for b, and \frac{25}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{20}{3}\right)±\sqrt{\frac{400}{9}-4\left(-\frac{5}{3}\right)\times \frac{25}{3}}}{2\left(-\frac{5}{3}\right)}
Square -\frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{20}{3}\right)±\sqrt{\frac{400}{9}+\frac{20}{3}\times \frac{25}{3}}}{2\left(-\frac{5}{3}\right)}
Multiply -4 times -\frac{5}{3}.
x=\frac{-\left(-\frac{20}{3}\right)±\sqrt{\frac{400+500}{9}}}{2\left(-\frac{5}{3}\right)}
Multiply \frac{20}{3} times \frac{25}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{20}{3}\right)±\sqrt{100}}{2\left(-\frac{5}{3}\right)}
Add \frac{400}{9} to \frac{500}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{20}{3}\right)±10}{2\left(-\frac{5}{3}\right)}
Take the square root of 100.
x=\frac{\frac{20}{3}±10}{2\left(-\frac{5}{3}\right)}
The opposite of -\frac{20}{3} is \frac{20}{3}.
x=\frac{\frac{20}{3}±10}{-\frac{10}{3}}
Multiply 2 times -\frac{5}{3}.
x=\frac{\frac{50}{3}}{-\frac{10}{3}}
Now solve the equation x=\frac{\frac{20}{3}±10}{-\frac{10}{3}} when ± is plus. Add \frac{20}{3} to 10.
x=-5
Divide \frac{50}{3} by -\frac{10}{3} by multiplying \frac{50}{3} by the reciprocal of -\frac{10}{3}.
x=-\frac{\frac{10}{3}}{-\frac{10}{3}}
Now solve the equation x=\frac{\frac{20}{3}±10}{-\frac{10}{3}} when ± is minus. Subtract 10 from \frac{20}{3}.
x=1
Divide -\frac{10}{3} by -\frac{10}{3} by multiplying -\frac{10}{3} by the reciprocal of -\frac{10}{3}.
x=-5 x=1
The equation is now solved.
3\left(\frac{4}{9}x^{2}-\frac{8}{9}x+\frac{4}{9}\right)=3x^{2}+4x-7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{3}x-\frac{2}{3}\right)^{2}.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}=3x^{2}+4x-7
Use the distributive property to multiply 3 by \frac{4}{9}x^{2}-\frac{8}{9}x+\frac{4}{9}.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}-3x^{2}=4x-7
Subtract 3x^{2} from both sides.
-\frac{5}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}=4x-7
Combine \frac{4}{3}x^{2} and -3x^{2} to get -\frac{5}{3}x^{2}.
-\frac{5}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}-4x=-7
Subtract 4x from both sides.
-\frac{5}{3}x^{2}-\frac{20}{3}x+\frac{4}{3}=-7
Combine -\frac{8}{3}x and -4x to get -\frac{20}{3}x.
-\frac{5}{3}x^{2}-\frac{20}{3}x=-7-\frac{4}{3}
Subtract \frac{4}{3} from both sides.
-\frac{5}{3}x^{2}-\frac{20}{3}x=-\frac{25}{3}
Subtract \frac{4}{3} from -7 to get -\frac{25}{3}.
\frac{-\frac{5}{3}x^{2}-\frac{20}{3}x}{-\frac{5}{3}}=-\frac{\frac{25}{3}}{-\frac{5}{3}}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{20}{3}}{-\frac{5}{3}}\right)x=-\frac{\frac{25}{3}}{-\frac{5}{3}}
Dividing by -\frac{5}{3} undoes the multiplication by -\frac{5}{3}.
x^{2}+4x=-\frac{\frac{25}{3}}{-\frac{5}{3}}
Divide -\frac{20}{3} by -\frac{5}{3} by multiplying -\frac{20}{3} by the reciprocal of -\frac{5}{3}.
x^{2}+4x=5
Divide -\frac{25}{3} by -\frac{5}{3} by multiplying -\frac{25}{3} by the reciprocal of -\frac{5}{3}.
x^{2}+4x+2^{2}=5+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=5+4
Square 2.
x^{2}+4x+4=9
Add 5 to 4.
\left(x+2\right)^{2}=9
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+2=3 x+2=-3
Simplify.
x=1 x=-5
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}