Solve for x
x=\frac{9}{11}\approx 0.818181818
Graph
Share
Copied to clipboard
18\left(\frac{11}{6}-x\right)-24=12x-18\left(1-\frac{x}{6}\right)
Multiply both sides of the equation by 6.
18\times \frac{11}{6}-18x-24=12x-18\left(1-\frac{x}{6}\right)
Use the distributive property to multiply 18 by \frac{11}{6}-x.
\frac{18\times 11}{6}-18x-24=12x-18\left(1-\frac{x}{6}\right)
Express 18\times \frac{11}{6} as a single fraction.
\frac{198}{6}-18x-24=12x-18\left(1-\frac{x}{6}\right)
Multiply 18 and 11 to get 198.
33-18x-24=12x-18\left(1-\frac{x}{6}\right)
Divide 198 by 6 to get 33.
9-18x=12x-18\left(1-\frac{x}{6}\right)
Subtract 24 from 33 to get 9.
9-18x+18\left(1-\frac{x}{6}\right)=12x
Add 18\left(1-\frac{x}{6}\right) to both sides.
9-18x+18+18\left(-\frac{x}{6}\right)=12x
Use the distributive property to multiply 18 by 1-\frac{x}{6}.
9-18x+18-3x=12x
Cancel out 6, the greatest common factor in 18 and 6.
27-18x-3x=12x
Add 9 and 18 to get 27.
27-21x=12x
Combine -18x and -3x to get -21x.
27-21x-12x=0
Subtract 12x from both sides.
27-33x=0
Combine -21x and -12x to get -33x.
-33x=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-27}{-33}
Divide both sides by -33.
x=\frac{9}{11}
Reduce the fraction \frac{-27}{-33} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}