Evaluate
\frac{2}{9}\approx 0.222222222
Factor
\frac{2}{3 ^ {2}} = 0.2222222222222222
Share
Copied to clipboard
3\times \frac{1}{27}-2\times \left(\frac{1}{3}\right)^{2}+\frac{1}{3}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{3}{27}-2\times \left(\frac{1}{3}\right)^{2}+\frac{1}{3}
Multiply 3 and \frac{1}{27} to get \frac{3}{27}.
\frac{1}{9}-2\times \left(\frac{1}{3}\right)^{2}+\frac{1}{3}
Reduce the fraction \frac{3}{27} to lowest terms by extracting and canceling out 3.
\frac{1}{9}-2\times \frac{1}{9}+\frac{1}{3}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}-\frac{2}{9}+\frac{1}{3}
Multiply 2 and \frac{1}{9} to get \frac{2}{9}.
\frac{1-2}{9}+\frac{1}{3}
Since \frac{1}{9} and \frac{2}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{9}+\frac{1}{3}
Subtract 2 from 1 to get -1.
-\frac{1}{9}+\frac{3}{9}
Least common multiple of 9 and 3 is 9. Convert -\frac{1}{9} and \frac{1}{3} to fractions with denominator 9.
\frac{-1+3}{9}
Since -\frac{1}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
\frac{2}{9}
Add -1 and 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}