Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a+b=-5 ab=3\left(-2\right)=-6
Factor the expression by grouping. First, the expression needs to be rewritten as 3z^{2}+az+bz-2. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(3z^{2}-6z\right)+\left(z-2\right)
Rewrite 3z^{2}-5z-2 as \left(3z^{2}-6z\right)+\left(z-2\right).
3z\left(z-2\right)+z-2
Factor out 3z in 3z^{2}-6z.
\left(z-2\right)\left(3z+1\right)
Factor out common term z-2 by using distributive property.
3z^{2}-5z-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Square -5.
z=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
z=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
Multiply -12 times -2.
z=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
Add 25 to 24.
z=\frac{-\left(-5\right)±7}{2\times 3}
Take the square root of 49.
z=\frac{5±7}{2\times 3}
The opposite of -5 is 5.
z=\frac{5±7}{6}
Multiply 2 times 3.
z=\frac{12}{6}
Now solve the equation z=\frac{5±7}{6} when ± is plus. Add 5 to 7.
z=2
Divide 12 by 6.
z=-\frac{2}{6}
Now solve the equation z=\frac{5±7}{6} when ± is minus. Subtract 7 from 5.
z=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
3z^{2}-5z-2=3\left(z-2\right)\left(z-\left(-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{1}{3} for x_{2}.
3z^{2}-5z-2=3\left(z-2\right)\left(z+\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3z^{2}-5z-2=3\left(z-2\right)\times \frac{3z+1}{3}
Add \frac{1}{3} to z by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3z^{2}-5z-2=\left(z-2\right)\left(3z+1\right)
Cancel out 3, the greatest common factor in 3 and 3.