Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-8x+10=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-8x+10-12=12-12
Subtract 12 from both sides of the equation.
3x^{2}-8x+10-12=0
Subtracting 12 from itself leaves 0.
3x^{2}-8x-2=0
Subtract 12 from 10.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -8 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3\left(-2\right)}}{2\times 3}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-8\right)±\sqrt{64+24}}{2\times 3}
Multiply -12 times -2.
x=\frac{-\left(-8\right)±\sqrt{88}}{2\times 3}
Add 64 to 24.
x=\frac{-\left(-8\right)±2\sqrt{22}}{2\times 3}
Take the square root of 88.
x=\frac{8±2\sqrt{22}}{2\times 3}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{22}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{22}+8}{6}
Now solve the equation x=\frac{8±2\sqrt{22}}{6} when ± is plus. Add 8 to 2\sqrt{22}.
x=\frac{\sqrt{22}+4}{3}
Divide 8+2\sqrt{22} by 6.
x=\frac{8-2\sqrt{22}}{6}
Now solve the equation x=\frac{8±2\sqrt{22}}{6} when ± is minus. Subtract 2\sqrt{22} from 8.
x=\frac{4-\sqrt{22}}{3}
Divide 8-2\sqrt{22} by 6.
x=\frac{\sqrt{22}+4}{3} x=\frac{4-\sqrt{22}}{3}
The equation is now solved.
3x^{2}-8x+10=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-8x+10-10=12-10
Subtract 10 from both sides of the equation.
3x^{2}-8x=12-10
Subtracting 10 from itself leaves 0.
3x^{2}-8x=2
Subtract 10 from 12.
\frac{3x^{2}-8x}{3}=\frac{2}{3}
Divide both sides by 3.
x^{2}-\frac{8}{3}x=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=\frac{2}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{2}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{22}{9}
Add \frac{2}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=\frac{22}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{22}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{22}}{3} x-\frac{4}{3}=-\frac{\sqrt{22}}{3}
Simplify.
x=\frac{\sqrt{22}+4}{3} x=\frac{4-\sqrt{22}}{3}
Add \frac{4}{3} to both sides of the equation.