Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-2x-3\right)
Factor out 3.
a+b=-2 ab=1\left(-3\right)=-3
Consider x^{2}-2x-3. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-3x\right)+\left(x-3\right)
Rewrite x^{2}-2x-3 as \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Factor out x in x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Factor out common term x-3 by using distributive property.
3\left(x-3\right)\left(x+1\right)
Rewrite the complete factored expression.
3x^{2}-6x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-9\right)}}{2\times 3}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\times 3}
Multiply -12 times -9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\times 3}
Add 36 to 108.
x=\frac{-\left(-6\right)±12}{2\times 3}
Take the square root of 144.
x=\frac{6±12}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±12}{6}
Multiply 2 times 3.
x=\frac{18}{6}
Now solve the equation x=\frac{6±12}{6} when ± is plus. Add 6 to 12.
x=3
Divide 18 by 6.
x=-\frac{6}{6}
Now solve the equation x=\frac{6±12}{6} when ± is minus. Subtract 12 from 6.
x=-1
Divide -6 by 6.
3x^{2}-6x-9=3\left(x-3\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -1 for x_{2}.
3x^{2}-6x-9=3\left(x-3\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.