Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-6x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-15\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-15\right)}}{2\times 3}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{36+180}}{2\times 3}
Multiply -12 times -15.
x=\frac{-\left(-6\right)±\sqrt{216}}{2\times 3}
Add 36 to 180.
x=\frac{-\left(-6\right)±6\sqrt{6}}{2\times 3}
Take the square root of 216.
x=\frac{6±6\sqrt{6}}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{6}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{6}+6}{6}
Now solve the equation x=\frac{6±6\sqrt{6}}{6} when ± is plus. Add 6 to 6\sqrt{6}.
x=\sqrt{6}+1
Divide 6+6\sqrt{6} by 6.
x=\frac{6-6\sqrt{6}}{6}
Now solve the equation x=\frac{6±6\sqrt{6}}{6} when ± is minus. Subtract 6\sqrt{6} from 6.
x=1-\sqrt{6}
Divide 6-6\sqrt{6} by 6.
3x^{2}-6x-15=3\left(x-\left(\sqrt{6}+1\right)\right)\left(x-\left(1-\sqrt{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1+\sqrt{6} for x_{1} and 1-\sqrt{6} for x_{2}.