Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-50x-1500=3800
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-50x-1500-3800=3800-3800
Subtract 3800 from both sides of the equation.
3x^{2}-50x-1500-3800=0
Subtracting 3800 from itself leaves 0.
3x^{2}-50x-5300=0
Subtract 3800 from -1500.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 3\left(-5300\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -50 for b, and -5300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 3\left(-5300\right)}}{2\times 3}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500-12\left(-5300\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-50\right)±\sqrt{2500+63600}}{2\times 3}
Multiply -12 times -5300.
x=\frac{-\left(-50\right)±\sqrt{66100}}{2\times 3}
Add 2500 to 63600.
x=\frac{-\left(-50\right)±10\sqrt{661}}{2\times 3}
Take the square root of 66100.
x=\frac{50±10\sqrt{661}}{2\times 3}
The opposite of -50 is 50.
x=\frac{50±10\sqrt{661}}{6}
Multiply 2 times 3.
x=\frac{10\sqrt{661}+50}{6}
Now solve the equation x=\frac{50±10\sqrt{661}}{6} when ± is plus. Add 50 to 10\sqrt{661}.
x=\frac{5\sqrt{661}+25}{3}
Divide 50+10\sqrt{661} by 6.
x=\frac{50-10\sqrt{661}}{6}
Now solve the equation x=\frac{50±10\sqrt{661}}{6} when ± is minus. Subtract 10\sqrt{661} from 50.
x=\frac{25-5\sqrt{661}}{3}
Divide 50-10\sqrt{661} by 6.
x=\frac{5\sqrt{661}+25}{3} x=\frac{25-5\sqrt{661}}{3}
The equation is now solved.
3x^{2}-50x-1500=3800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-50x-1500-\left(-1500\right)=3800-\left(-1500\right)
Add 1500 to both sides of the equation.
3x^{2}-50x=3800-\left(-1500\right)
Subtracting -1500 from itself leaves 0.
3x^{2}-50x=5300
Subtract -1500 from 3800.
\frac{3x^{2}-50x}{3}=\frac{5300}{3}
Divide both sides by 3.
x^{2}-\frac{50}{3}x=\frac{5300}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{50}{3}x+\left(-\frac{25}{3}\right)^{2}=\frac{5300}{3}+\left(-\frac{25}{3}\right)^{2}
Divide -\frac{50}{3}, the coefficient of the x term, by 2 to get -\frac{25}{3}. Then add the square of -\frac{25}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{5300}{3}+\frac{625}{9}
Square -\frac{25}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{16525}{9}
Add \frac{5300}{3} to \frac{625}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{3}\right)^{2}=\frac{16525}{9}
Factor x^{2}-\frac{50}{3}x+\frac{625}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{3}\right)^{2}}=\sqrt{\frac{16525}{9}}
Take the square root of both sides of the equation.
x-\frac{25}{3}=\frac{5\sqrt{661}}{3} x-\frac{25}{3}=-\frac{5\sqrt{661}}{3}
Simplify.
x=\frac{5\sqrt{661}+25}{3} x=\frac{25-5\sqrt{661}}{3}
Add \frac{25}{3} to both sides of the equation.