Solve for x
x=-6
x=7
Graph
Share
Copied to clipboard
x^{2}-x-42=0
Divide both sides by 3.
a+b=-1 ab=1\left(-42\right)=-42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-42. To find a and b, set up a system to be solved.
1,-42 2,-21 3,-14 6,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Calculate the sum for each pair.
a=-7 b=6
The solution is the pair that gives sum -1.
\left(x^{2}-7x\right)+\left(6x-42\right)
Rewrite x^{2}-x-42 as \left(x^{2}-7x\right)+\left(6x-42\right).
x\left(x-7\right)+6\left(x-7\right)
Factor out x in the first and 6 in the second group.
\left(x-7\right)\left(x+6\right)
Factor out common term x-7 by using distributive property.
x=7 x=-6
To find equation solutions, solve x-7=0 and x+6=0.
3x^{2}-3x-126=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-126\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and -126 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-126\right)}}{2\times 3}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-126\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{9+1512}}{2\times 3}
Multiply -12 times -126.
x=\frac{-\left(-3\right)±\sqrt{1521}}{2\times 3}
Add 9 to 1512.
x=\frac{-\left(-3\right)±39}{2\times 3}
Take the square root of 1521.
x=\frac{3±39}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±39}{6}
Multiply 2 times 3.
x=\frac{42}{6}
Now solve the equation x=\frac{3±39}{6} when ± is plus. Add 3 to 39.
x=7
Divide 42 by 6.
x=-\frac{36}{6}
Now solve the equation x=\frac{3±39}{6} when ± is minus. Subtract 39 from 3.
x=-6
Divide -36 by 6.
x=7 x=-6
The equation is now solved.
3x^{2}-3x-126=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-3x-126-\left(-126\right)=-\left(-126\right)
Add 126 to both sides of the equation.
3x^{2}-3x=-\left(-126\right)
Subtracting -126 from itself leaves 0.
3x^{2}-3x=126
Subtract -126 from 0.
\frac{3x^{2}-3x}{3}=\frac{126}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3}{3}\right)x=\frac{126}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-x=\frac{126}{3}
Divide -3 by 3.
x^{2}-x=42
Divide 126 by 3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=42+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=42+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{169}{4}
Add 42 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{13}{2} x-\frac{1}{2}=-\frac{13}{2}
Simplify.
x=7 x=-6
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}