Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-9x-10\right)
Factor out 3.
a+b=-9 ab=1\left(-10\right)=-10
Consider x^{2}-9x-10. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-10 b=1
The solution is the pair that gives sum -9.
\left(x^{2}-10x\right)+\left(x-10\right)
Rewrite x^{2}-9x-10 as \left(x^{2}-10x\right)+\left(x-10\right).
x\left(x-10\right)+x-10
Factor out x in x^{2}-10x.
\left(x-10\right)\left(x+1\right)
Factor out common term x-10 by using distributive property.
3\left(x-10\right)\left(x+1\right)
Rewrite the complete factored expression.
3x^{2}-27x-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 3\left(-30\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 3\left(-30\right)}}{2\times 3}
Square -27.
x=\frac{-\left(-27\right)±\sqrt{729-12\left(-30\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-27\right)±\sqrt{729+360}}{2\times 3}
Multiply -12 times -30.
x=\frac{-\left(-27\right)±\sqrt{1089}}{2\times 3}
Add 729 to 360.
x=\frac{-\left(-27\right)±33}{2\times 3}
Take the square root of 1089.
x=\frac{27±33}{2\times 3}
The opposite of -27 is 27.
x=\frac{27±33}{6}
Multiply 2 times 3.
x=\frac{60}{6}
Now solve the equation x=\frac{27±33}{6} when ± is plus. Add 27 to 33.
x=10
Divide 60 by 6.
x=-\frac{6}{6}
Now solve the equation x=\frac{27±33}{6} when ± is minus. Subtract 33 from 27.
x=-1
Divide -6 by 6.
3x^{2}-27x-30=3\left(x-10\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10 for x_{1} and -1 for x_{2}.
3x^{2}-27x-30=3\left(x-10\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.