Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-22x-52=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\left(-52\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -22 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 3\left(-52\right)}}{2\times 3}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-12\left(-52\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-22\right)±\sqrt{484+624}}{2\times 3}
Multiply -12 times -52.
x=\frac{-\left(-22\right)±\sqrt{1108}}{2\times 3}
Add 484 to 624.
x=\frac{-\left(-22\right)±2\sqrt{277}}{2\times 3}
Take the square root of 1108.
x=\frac{22±2\sqrt{277}}{2\times 3}
The opposite of -22 is 22.
x=\frac{22±2\sqrt{277}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{277}+22}{6}
Now solve the equation x=\frac{22±2\sqrt{277}}{6} when ± is plus. Add 22 to 2\sqrt{277}.
x=\frac{\sqrt{277}+11}{3}
Divide 22+2\sqrt{277} by 6.
x=\frac{22-2\sqrt{277}}{6}
Now solve the equation x=\frac{22±2\sqrt{277}}{6} when ± is minus. Subtract 2\sqrt{277} from 22.
x=\frac{11-\sqrt{277}}{3}
Divide 22-2\sqrt{277} by 6.
x=\frac{\sqrt{277}+11}{3} x=\frac{11-\sqrt{277}}{3}
The equation is now solved.
3x^{2}-22x-52=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-22x-52-\left(-52\right)=-\left(-52\right)
Add 52 to both sides of the equation.
3x^{2}-22x=-\left(-52\right)
Subtracting -52 from itself leaves 0.
3x^{2}-22x=52
Subtract -52 from 0.
\frac{3x^{2}-22x}{3}=\frac{52}{3}
Divide both sides by 3.
x^{2}-\frac{22}{3}x=\frac{52}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{22}{3}x+\left(-\frac{11}{3}\right)^{2}=\frac{52}{3}+\left(-\frac{11}{3}\right)^{2}
Divide -\frac{22}{3}, the coefficient of the x term, by 2 to get -\frac{11}{3}. Then add the square of -\frac{11}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{22}{3}x+\frac{121}{9}=\frac{52}{3}+\frac{121}{9}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{22}{3}x+\frac{121}{9}=\frac{277}{9}
Add \frac{52}{3} to \frac{121}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{3}\right)^{2}=\frac{277}{9}
Factor x^{2}-\frac{22}{3}x+\frac{121}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{3}\right)^{2}}=\sqrt{\frac{277}{9}}
Take the square root of both sides of the equation.
x-\frac{11}{3}=\frac{\sqrt{277}}{3} x-\frac{11}{3}=-\frac{\sqrt{277}}{3}
Simplify.
x=\frac{\sqrt{277}+11}{3} x=\frac{11-\sqrt{277}}{3}
Add \frac{11}{3} to both sides of the equation.