Solve for x
x = \frac{\sqrt{577} + 19}{6} \approx 7.170137383
x=\frac{19-\sqrt{577}}{6}\approx -0.83680405
Graph
Share
Copied to clipboard
3x^{2}-19x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -19 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 3\left(-18\right)}}{2\times 3}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-12\left(-18\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-19\right)±\sqrt{361+216}}{2\times 3}
Multiply -12 times -18.
x=\frac{-\left(-19\right)±\sqrt{577}}{2\times 3}
Add 361 to 216.
x=\frac{19±\sqrt{577}}{2\times 3}
The opposite of -19 is 19.
x=\frac{19±\sqrt{577}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{577}+19}{6}
Now solve the equation x=\frac{19±\sqrt{577}}{6} when ± is plus. Add 19 to \sqrt{577}.
x=\frac{19-\sqrt{577}}{6}
Now solve the equation x=\frac{19±\sqrt{577}}{6} when ± is minus. Subtract \sqrt{577} from 19.
x=\frac{\sqrt{577}+19}{6} x=\frac{19-\sqrt{577}}{6}
The equation is now solved.
3x^{2}-19x-18=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-19x-18-\left(-18\right)=-\left(-18\right)
Add 18 to both sides of the equation.
3x^{2}-19x=-\left(-18\right)
Subtracting -18 from itself leaves 0.
3x^{2}-19x=18
Subtract -18 from 0.
\frac{3x^{2}-19x}{3}=\frac{18}{3}
Divide both sides by 3.
x^{2}-\frac{19}{3}x=\frac{18}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{19}{3}x=6
Divide 18 by 3.
x^{2}-\frac{19}{3}x+\left(-\frac{19}{6}\right)^{2}=6+\left(-\frac{19}{6}\right)^{2}
Divide -\frac{19}{3}, the coefficient of the x term, by 2 to get -\frac{19}{6}. Then add the square of -\frac{19}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{3}x+\frac{361}{36}=6+\frac{361}{36}
Square -\frac{19}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{3}x+\frac{361}{36}=\frac{577}{36}
Add 6 to \frac{361}{36}.
\left(x-\frac{19}{6}\right)^{2}=\frac{577}{36}
Factor x^{2}-\frac{19}{3}x+\frac{361}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{6}\right)^{2}}=\sqrt{\frac{577}{36}}
Take the square root of both sides of the equation.
x-\frac{19}{6}=\frac{\sqrt{577}}{6} x-\frac{19}{6}=-\frac{\sqrt{577}}{6}
Simplify.
x=\frac{\sqrt{577}+19}{6} x=\frac{19-\sqrt{577}}{6}
Add \frac{19}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}