Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-17 ab=3\times 20=60
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-12 b=-5
The solution is the pair that gives sum -17.
\left(3x^{2}-12x\right)+\left(-5x+20\right)
Rewrite 3x^{2}-17x+20 as \left(3x^{2}-12x\right)+\left(-5x+20\right).
3x\left(x-4\right)-5\left(x-4\right)
Factor out 3x in the first and -5 in the second group.
\left(x-4\right)\left(3x-5\right)
Factor out common term x-4 by using distributive property.
3x^{2}-17x+20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 20}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 20}}{2\times 3}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 20}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-17\right)±\sqrt{289-240}}{2\times 3}
Multiply -12 times 20.
x=\frac{-\left(-17\right)±\sqrt{49}}{2\times 3}
Add 289 to -240.
x=\frac{-\left(-17\right)±7}{2\times 3}
Take the square root of 49.
x=\frac{17±7}{2\times 3}
The opposite of -17 is 17.
x=\frac{17±7}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{17±7}{6} when ± is plus. Add 17 to 7.
x=4
Divide 24 by 6.
x=\frac{10}{6}
Now solve the equation x=\frac{17±7}{6} when ± is minus. Subtract 7 from 17.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
3x^{2}-17x+20=3\left(x-4\right)\left(x-\frac{5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and \frac{5}{3} for x_{2}.
3x^{2}-17x+20=3\left(x-4\right)\times \frac{3x-5}{3}
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-17x+20=\left(x-4\right)\left(3x-5\right)
Cancel out 3, the greatest common factor in 3 and 3.