Solve for x
x = \frac{\sqrt{13} + 8}{3} \approx 3.868517092
x = \frac{8 - \sqrt{13}}{3} \approx 1.464816242
Graph
Share
Copied to clipboard
3x^{2}-16x+17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 3\times 17}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -16 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 3\times 17}}{2\times 3}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-12\times 17}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-16\right)±\sqrt{256-204}}{2\times 3}
Multiply -12 times 17.
x=\frac{-\left(-16\right)±\sqrt{52}}{2\times 3}
Add 256 to -204.
x=\frac{-\left(-16\right)±2\sqrt{13}}{2\times 3}
Take the square root of 52.
x=\frac{16±2\sqrt{13}}{2\times 3}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{13}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{13}+16}{6}
Now solve the equation x=\frac{16±2\sqrt{13}}{6} when ± is plus. Add 16 to 2\sqrt{13}.
x=\frac{\sqrt{13}+8}{3}
Divide 16+2\sqrt{13} by 6.
x=\frac{16-2\sqrt{13}}{6}
Now solve the equation x=\frac{16±2\sqrt{13}}{6} when ± is minus. Subtract 2\sqrt{13} from 16.
x=\frac{8-\sqrt{13}}{3}
Divide 16-2\sqrt{13} by 6.
x=\frac{\sqrt{13}+8}{3} x=\frac{8-\sqrt{13}}{3}
The equation is now solved.
3x^{2}-16x+17=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-16x+17-17=-17
Subtract 17 from both sides of the equation.
3x^{2}-16x=-17
Subtracting 17 from itself leaves 0.
\frac{3x^{2}-16x}{3}=-\frac{17}{3}
Divide both sides by 3.
x^{2}-\frac{16}{3}x=-\frac{17}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=-\frac{17}{3}+\left(-\frac{8}{3}\right)^{2}
Divide -\frac{16}{3}, the coefficient of the x term, by 2 to get -\frac{8}{3}. Then add the square of -\frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{3}x+\frac{64}{9}=-\frac{17}{3}+\frac{64}{9}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{13}{9}
Add -\frac{17}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{3}\right)^{2}=\frac{13}{9}
Factor x^{2}-\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Take the square root of both sides of the equation.
x-\frac{8}{3}=\frac{\sqrt{13}}{3} x-\frac{8}{3}=-\frac{\sqrt{13}}{3}
Simplify.
x=\frac{\sqrt{13}+8}{3} x=\frac{8-\sqrt{13}}{3}
Add \frac{8}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}