Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-12x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 4}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 4}}{2\times 3}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 4}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-12\right)±\sqrt{144-48}}{2\times 3}
Multiply -12 times 4.
x=\frac{-\left(-12\right)±\sqrt{96}}{2\times 3}
Add 144 to -48.
x=\frac{-\left(-12\right)±4\sqrt{6}}{2\times 3}
Take the square root of 96.
x=\frac{12±4\sqrt{6}}{2\times 3}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{6}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{6}+12}{6}
Now solve the equation x=\frac{12±4\sqrt{6}}{6} when ± is plus. Add 12 to 4\sqrt{6}.
x=\frac{2\sqrt{6}}{3}+2
Divide 12+4\sqrt{6} by 6.
x=\frac{12-4\sqrt{6}}{6}
Now solve the equation x=\frac{12±4\sqrt{6}}{6} when ± is minus. Subtract 4\sqrt{6} from 12.
x=-\frac{2\sqrt{6}}{3}+2
Divide 12-4\sqrt{6} by 6.
3x^{2}-12x+4=3\left(x-\left(\frac{2\sqrt{6}}{3}+2\right)\right)\left(x-\left(-\frac{2\sqrt{6}}{3}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2+\frac{2\sqrt{6}}{3} for x_{1} and 2-\frac{2\sqrt{6}}{3} for x_{2}.