Factor
\left(x-16\right)\left(3x-71\right)
Evaluate
\left(x-16\right)\left(3x-71\right)
Graph
Share
Copied to clipboard
a+b=-119 ab=3\times 1136=3408
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+1136. To find a and b, set up a system to be solved.
-1,-3408 -2,-1704 -3,-1136 -4,-852 -6,-568 -8,-426 -12,-284 -16,-213 -24,-142 -48,-71
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 3408.
-1-3408=-3409 -2-1704=-1706 -3-1136=-1139 -4-852=-856 -6-568=-574 -8-426=-434 -12-284=-296 -16-213=-229 -24-142=-166 -48-71=-119
Calculate the sum for each pair.
a=-71 b=-48
The solution is the pair that gives sum -119.
\left(3x^{2}-71x\right)+\left(-48x+1136\right)
Rewrite 3x^{2}-119x+1136 as \left(3x^{2}-71x\right)+\left(-48x+1136\right).
x\left(3x-71\right)-16\left(3x-71\right)
Factor out x in the first and -16 in the second group.
\left(3x-71\right)\left(x-16\right)
Factor out common term 3x-71 by using distributive property.
3x^{2}-119x+1136=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 3\times 1136}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-119\right)±\sqrt{14161-4\times 3\times 1136}}{2\times 3}
Square -119.
x=\frac{-\left(-119\right)±\sqrt{14161-12\times 1136}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-119\right)±\sqrt{14161-13632}}{2\times 3}
Multiply -12 times 1136.
x=\frac{-\left(-119\right)±\sqrt{529}}{2\times 3}
Add 14161 to -13632.
x=\frac{-\left(-119\right)±23}{2\times 3}
Take the square root of 529.
x=\frac{119±23}{2\times 3}
The opposite of -119 is 119.
x=\frac{119±23}{6}
Multiply 2 times 3.
x=\frac{142}{6}
Now solve the equation x=\frac{119±23}{6} when ± is plus. Add 119 to 23.
x=\frac{71}{3}
Reduce the fraction \frac{142}{6} to lowest terms by extracting and canceling out 2.
x=\frac{96}{6}
Now solve the equation x=\frac{119±23}{6} when ± is minus. Subtract 23 from 119.
x=16
Divide 96 by 6.
3x^{2}-119x+1136=3\left(x-\frac{71}{3}\right)\left(x-16\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{71}{3} for x_{1} and 16 for x_{2}.
3x^{2}-119x+1136=3\times \frac{3x-71}{3}\left(x-16\right)
Subtract \frac{71}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-119x+1136=\left(3x-71\right)\left(x-16\right)
Cancel out 3, the greatest common factor in 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}