Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+8x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-14\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 3\left(-14\right)}}{2\times 3}
Square 8.
x=\frac{-8±\sqrt{64-12\left(-14\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-8±\sqrt{64+168}}{2\times 3}
Multiply -12 times -14.
x=\frac{-8±\sqrt{232}}{2\times 3}
Add 64 to 168.
x=\frac{-8±2\sqrt{58}}{2\times 3}
Take the square root of 232.
x=\frac{-8±2\sqrt{58}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{58}-8}{6}
Now solve the equation x=\frac{-8±2\sqrt{58}}{6} when ± is plus. Add -8 to 2\sqrt{58}.
x=\frac{\sqrt{58}-4}{3}
Divide -8+2\sqrt{58} by 6.
x=\frac{-2\sqrt{58}-8}{6}
Now solve the equation x=\frac{-8±2\sqrt{58}}{6} when ± is minus. Subtract 2\sqrt{58} from -8.
x=\frac{-\sqrt{58}-4}{3}
Divide -8-2\sqrt{58} by 6.
3x^{2}+8x-14=3\left(x-\frac{\sqrt{58}-4}{3}\right)\left(x-\frac{-\sqrt{58}-4}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-4+\sqrt{58}}{3} for x_{1} and \frac{-4-\sqrt{58}}{3} for x_{2}.