Solve for x
x = -\frac{80}{3} = -26\frac{2}{3} \approx -26.666666667
x=9
Graph
Share
Copied to clipboard
a+b=53 ab=3\left(-720\right)=-2160
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-720. To find a and b, set up a system to be solved.
-1,2160 -2,1080 -3,720 -4,540 -5,432 -6,360 -8,270 -9,240 -10,216 -12,180 -15,144 -16,135 -18,120 -20,108 -24,90 -27,80 -30,72 -36,60 -40,54 -45,48
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2160.
-1+2160=2159 -2+1080=1078 -3+720=717 -4+540=536 -5+432=427 -6+360=354 -8+270=262 -9+240=231 -10+216=206 -12+180=168 -15+144=129 -16+135=119 -18+120=102 -20+108=88 -24+90=66 -27+80=53 -30+72=42 -36+60=24 -40+54=14 -45+48=3
Calculate the sum for each pair.
a=-27 b=80
The solution is the pair that gives sum 53.
\left(3x^{2}-27x\right)+\left(80x-720\right)
Rewrite 3x^{2}+53x-720 as \left(3x^{2}-27x\right)+\left(80x-720\right).
3x\left(x-9\right)+80\left(x-9\right)
Factor out 3x in the first and 80 in the second group.
\left(x-9\right)\left(3x+80\right)
Factor out common term x-9 by using distributive property.
x=9 x=-\frac{80}{3}
To find equation solutions, solve x-9=0 and 3x+80=0.
3x^{2}+53x-720=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-53±\sqrt{53^{2}-4\times 3\left(-720\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 53 for b, and -720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-53±\sqrt{2809-4\times 3\left(-720\right)}}{2\times 3}
Square 53.
x=\frac{-53±\sqrt{2809-12\left(-720\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-53±\sqrt{2809+8640}}{2\times 3}
Multiply -12 times -720.
x=\frac{-53±\sqrt{11449}}{2\times 3}
Add 2809 to 8640.
x=\frac{-53±107}{2\times 3}
Take the square root of 11449.
x=\frac{-53±107}{6}
Multiply 2 times 3.
x=\frac{54}{6}
Now solve the equation x=\frac{-53±107}{6} when ± is plus. Add -53 to 107.
x=9
Divide 54 by 6.
x=-\frac{160}{6}
Now solve the equation x=\frac{-53±107}{6} when ± is minus. Subtract 107 from -53.
x=-\frac{80}{3}
Reduce the fraction \frac{-160}{6} to lowest terms by extracting and canceling out 2.
x=9 x=-\frac{80}{3}
The equation is now solved.
3x^{2}+53x-720=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+53x-720-\left(-720\right)=-\left(-720\right)
Add 720 to both sides of the equation.
3x^{2}+53x=-\left(-720\right)
Subtracting -720 from itself leaves 0.
3x^{2}+53x=720
Subtract -720 from 0.
\frac{3x^{2}+53x}{3}=\frac{720}{3}
Divide both sides by 3.
x^{2}+\frac{53}{3}x=\frac{720}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{53}{3}x=240
Divide 720 by 3.
x^{2}+\frac{53}{3}x+\left(\frac{53}{6}\right)^{2}=240+\left(\frac{53}{6}\right)^{2}
Divide \frac{53}{3}, the coefficient of the x term, by 2 to get \frac{53}{6}. Then add the square of \frac{53}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{53}{3}x+\frac{2809}{36}=240+\frac{2809}{36}
Square \frac{53}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{53}{3}x+\frac{2809}{36}=\frac{11449}{36}
Add 240 to \frac{2809}{36}.
\left(x+\frac{53}{6}\right)^{2}=\frac{11449}{36}
Factor x^{2}+\frac{53}{3}x+\frac{2809}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{53}{6}\right)^{2}}=\sqrt{\frac{11449}{36}}
Take the square root of both sides of the equation.
x+\frac{53}{6}=\frac{107}{6} x+\frac{53}{6}=-\frac{107}{6}
Simplify.
x=9 x=-\frac{80}{3}
Subtract \frac{53}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}