Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+2x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-14\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\times 3\left(-14\right)}}{2\times 3}
Square 2.
x=\frac{-2±\sqrt{4-12\left(-14\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-2±\sqrt{4+168}}{2\times 3}
Multiply -12 times -14.
x=\frac{-2±\sqrt{172}}{2\times 3}
Add 4 to 168.
x=\frac{-2±2\sqrt{43}}{2\times 3}
Take the square root of 172.
x=\frac{-2±2\sqrt{43}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{43}-2}{6}
Now solve the equation x=\frac{-2±2\sqrt{43}}{6} when ± is plus. Add -2 to 2\sqrt{43}.
x=\frac{\sqrt{43}-1}{3}
Divide -2+2\sqrt{43} by 6.
x=\frac{-2\sqrt{43}-2}{6}
Now solve the equation x=\frac{-2±2\sqrt{43}}{6} when ± is minus. Subtract 2\sqrt{43} from -2.
x=\frac{-\sqrt{43}-1}{3}
Divide -2-2\sqrt{43} by 6.
3x^{2}+2x-14=3\left(x-\frac{\sqrt{43}-1}{3}\right)\left(x-\frac{-\sqrt{43}-1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{43}}{3} for x_{1} and \frac{-1-\sqrt{43}}{3} for x_{2}.