Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=2 ab=3\left(-1\right)=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-1 b=3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(3x^{2}-x\right)+\left(3x-1\right)
Rewrite 3x^{2}+2x-1 as \left(3x^{2}-x\right)+\left(3x-1\right).
x\left(3x-1\right)+3x-1
Factor out x in 3x^{2}-x.
\left(3x-1\right)\left(x+1\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=-1
To find equation solutions, solve 3x-1=0 and x+1=0.
3x^{2}+2x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-1\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-1\right)}}{2\times 3}
Square 2.
x=\frac{-2±\sqrt{4-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-2±\sqrt{4+12}}{2\times 3}
Multiply -12 times -1.
x=\frac{-2±\sqrt{16}}{2\times 3}
Add 4 to 12.
x=\frac{-2±4}{2\times 3}
Take the square root of 16.
x=\frac{-2±4}{6}
Multiply 2 times 3.
x=\frac{2}{6}
Now solve the equation x=\frac{-2±4}{6} when ± is plus. Add -2 to 4.
x=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{6}{6}
Now solve the equation x=\frac{-2±4}{6} when ± is minus. Subtract 4 from -2.
x=-1
Divide -6 by 6.
x=\frac{1}{3} x=-1
The equation is now solved.
3x^{2}+2x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+2x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
3x^{2}+2x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
3x^{2}+2x=1
Subtract -1 from 0.
\frac{3x^{2}+2x}{3}=\frac{1}{3}
Divide both sides by 3.
x^{2}+\frac{2}{3}x=\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Add \frac{1}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{2}{3} x+\frac{1}{3}=-\frac{2}{3}
Simplify.
x=\frac{1}{3} x=-1
Subtract \frac{1}{3} from both sides of the equation.