Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+14x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 14 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 3\left(-9\right)}}{2\times 3}
Square 14.
x=\frac{-14±\sqrt{196-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-14±\sqrt{196+108}}{2\times 3}
Multiply -12 times -9.
x=\frac{-14±\sqrt{304}}{2\times 3}
Add 196 to 108.
x=\frac{-14±4\sqrt{19}}{2\times 3}
Take the square root of 304.
x=\frac{-14±4\sqrt{19}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{19}-14}{6}
Now solve the equation x=\frac{-14±4\sqrt{19}}{6} when ± is plus. Add -14 to 4\sqrt{19}.
x=\frac{2\sqrt{19}-7}{3}
Divide -14+4\sqrt{19} by 6.
x=\frac{-4\sqrt{19}-14}{6}
Now solve the equation x=\frac{-14±4\sqrt{19}}{6} when ± is minus. Subtract 4\sqrt{19} from -14.
x=\frac{-2\sqrt{19}-7}{3}
Divide -14-4\sqrt{19} by 6.
x=\frac{2\sqrt{19}-7}{3} x=\frac{-2\sqrt{19}-7}{3}
The equation is now solved.
3x^{2}+14x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+14x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
3x^{2}+14x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
3x^{2}+14x=9
Subtract -9 from 0.
\frac{3x^{2}+14x}{3}=\frac{9}{3}
Divide both sides by 3.
x^{2}+\frac{14}{3}x=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{14}{3}x=3
Divide 9 by 3.
x^{2}+\frac{14}{3}x+\left(\frac{7}{3}\right)^{2}=3+\left(\frac{7}{3}\right)^{2}
Divide \frac{14}{3}, the coefficient of the x term, by 2 to get \frac{7}{3}. Then add the square of \frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{14}{3}x+\frac{49}{9}=3+\frac{49}{9}
Square \frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{14}{3}x+\frac{49}{9}=\frac{76}{9}
Add 3 to \frac{49}{9}.
\left(x+\frac{7}{3}\right)^{2}=\frac{76}{9}
Factor x^{2}+\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{3}\right)^{2}}=\sqrt{\frac{76}{9}}
Take the square root of both sides of the equation.
x+\frac{7}{3}=\frac{2\sqrt{19}}{3} x+\frac{7}{3}=-\frac{2\sqrt{19}}{3}
Simplify.
x=\frac{2\sqrt{19}-7}{3} x=\frac{-2\sqrt{19}-7}{3}
Subtract \frac{7}{3} from both sides of the equation.