Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+14x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 3\left(-15\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\times 3\left(-15\right)}}{2\times 3}
Square 14.
x=\frac{-14±\sqrt{196-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-14±\sqrt{196+180}}{2\times 3}
Multiply -12 times -15.
x=\frac{-14±\sqrt{376}}{2\times 3}
Add 196 to 180.
x=\frac{-14±2\sqrt{94}}{2\times 3}
Take the square root of 376.
x=\frac{-14±2\sqrt{94}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{94}-14}{6}
Now solve the equation x=\frac{-14±2\sqrt{94}}{6} when ± is plus. Add -14 to 2\sqrt{94}.
x=\frac{\sqrt{94}-7}{3}
Divide -14+2\sqrt{94} by 6.
x=\frac{-2\sqrt{94}-14}{6}
Now solve the equation x=\frac{-14±2\sqrt{94}}{6} when ± is minus. Subtract 2\sqrt{94} from -14.
x=\frac{-\sqrt{94}-7}{3}
Divide -14-2\sqrt{94} by 6.
3x^{2}+14x-15=3\left(x-\frac{\sqrt{94}-7}{3}\right)\left(x-\frac{-\sqrt{94}-7}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+\sqrt{94}}{3} for x_{1} and \frac{-7-\sqrt{94}}{3} for x_{2}.