Solve for x
x = -\frac{76}{3} = -25\frac{1}{3} \approx -25.333333333
x=21
Graph
Share
Copied to clipboard
a+b=13 ab=3\left(-1596\right)=-4788
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-1596. To find a and b, set up a system to be solved.
-1,4788 -2,2394 -3,1596 -4,1197 -6,798 -7,684 -9,532 -12,399 -14,342 -18,266 -19,252 -21,228 -28,171 -36,133 -38,126 -42,114 -57,84 -63,76
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4788.
-1+4788=4787 -2+2394=2392 -3+1596=1593 -4+1197=1193 -6+798=792 -7+684=677 -9+532=523 -12+399=387 -14+342=328 -18+266=248 -19+252=233 -21+228=207 -28+171=143 -36+133=97 -38+126=88 -42+114=72 -57+84=27 -63+76=13
Calculate the sum for each pair.
a=-63 b=76
The solution is the pair that gives sum 13.
\left(3x^{2}-63x\right)+\left(76x-1596\right)
Rewrite 3x^{2}+13x-1596 as \left(3x^{2}-63x\right)+\left(76x-1596\right).
3x\left(x-21\right)+76\left(x-21\right)
Factor out 3x in the first and 76 in the second group.
\left(x-21\right)\left(3x+76\right)
Factor out common term x-21 by using distributive property.
x=21 x=-\frac{76}{3}
To find equation solutions, solve x-21=0 and 3x+76=0.
3x^{2}+13x-1596=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\times 3\left(-1596\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 13 for b, and -1596 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 3\left(-1596\right)}}{2\times 3}
Square 13.
x=\frac{-13±\sqrt{169-12\left(-1596\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-13±\sqrt{169+19152}}{2\times 3}
Multiply -12 times -1596.
x=\frac{-13±\sqrt{19321}}{2\times 3}
Add 169 to 19152.
x=\frac{-13±139}{2\times 3}
Take the square root of 19321.
x=\frac{-13±139}{6}
Multiply 2 times 3.
x=\frac{126}{6}
Now solve the equation x=\frac{-13±139}{6} when ± is plus. Add -13 to 139.
x=21
Divide 126 by 6.
x=-\frac{152}{6}
Now solve the equation x=\frac{-13±139}{6} when ± is minus. Subtract 139 from -13.
x=-\frac{76}{3}
Reduce the fraction \frac{-152}{6} to lowest terms by extracting and canceling out 2.
x=21 x=-\frac{76}{3}
The equation is now solved.
3x^{2}+13x-1596=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+13x-1596-\left(-1596\right)=-\left(-1596\right)
Add 1596 to both sides of the equation.
3x^{2}+13x=-\left(-1596\right)
Subtracting -1596 from itself leaves 0.
3x^{2}+13x=1596
Subtract -1596 from 0.
\frac{3x^{2}+13x}{3}=\frac{1596}{3}
Divide both sides by 3.
x^{2}+\frac{13}{3}x=\frac{1596}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{13}{3}x=532
Divide 1596 by 3.
x^{2}+\frac{13}{3}x+\left(\frac{13}{6}\right)^{2}=532+\left(\frac{13}{6}\right)^{2}
Divide \frac{13}{3}, the coefficient of the x term, by 2 to get \frac{13}{6}. Then add the square of \frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{3}x+\frac{169}{36}=532+\frac{169}{36}
Square \frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{3}x+\frac{169}{36}=\frac{19321}{36}
Add 532 to \frac{169}{36}.
\left(x+\frac{13}{6}\right)^{2}=\frac{19321}{36}
Factor x^{2}+\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{6}\right)^{2}}=\sqrt{\frac{19321}{36}}
Take the square root of both sides of the equation.
x+\frac{13}{6}=\frac{139}{6} x+\frac{13}{6}=-\frac{139}{6}
Simplify.
x=21 x=-\frac{76}{3}
Subtract \frac{13}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}