Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
x=-3
Graph
Share
Copied to clipboard
a+b=13 ab=3\times 12=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=4 b=9
The solution is the pair that gives sum 13.
\left(3x^{2}+4x\right)+\left(9x+12\right)
Rewrite 3x^{2}+13x+12 as \left(3x^{2}+4x\right)+\left(9x+12\right).
x\left(3x+4\right)+3\left(3x+4\right)
Factor out x in the first and 3 in the second group.
\left(3x+4\right)\left(x+3\right)
Factor out common term 3x+4 by using distributive property.
x=-\frac{4}{3} x=-3
To find equation solutions, solve 3x+4=0 and x+3=0.
3x^{2}+13x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\times 3\times 12}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 13 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 3\times 12}}{2\times 3}
Square 13.
x=\frac{-13±\sqrt{169-12\times 12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-13±\sqrt{169-144}}{2\times 3}
Multiply -12 times 12.
x=\frac{-13±\sqrt{25}}{2\times 3}
Add 169 to -144.
x=\frac{-13±5}{2\times 3}
Take the square root of 25.
x=\frac{-13±5}{6}
Multiply 2 times 3.
x=-\frac{8}{6}
Now solve the equation x=\frac{-13±5}{6} when ± is plus. Add -13 to 5.
x=-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{18}{6}
Now solve the equation x=\frac{-13±5}{6} when ± is minus. Subtract 5 from -13.
x=-3
Divide -18 by 6.
x=-\frac{4}{3} x=-3
The equation is now solved.
3x^{2}+13x+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+13x+12-12=-12
Subtract 12 from both sides of the equation.
3x^{2}+13x=-12
Subtracting 12 from itself leaves 0.
\frac{3x^{2}+13x}{3}=-\frac{12}{3}
Divide both sides by 3.
x^{2}+\frac{13}{3}x=-\frac{12}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{13}{3}x=-4
Divide -12 by 3.
x^{2}+\frac{13}{3}x+\left(\frac{13}{6}\right)^{2}=-4+\left(\frac{13}{6}\right)^{2}
Divide \frac{13}{3}, the coefficient of the x term, by 2 to get \frac{13}{6}. Then add the square of \frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{3}x+\frac{169}{36}=-4+\frac{169}{36}
Square \frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{3}x+\frac{169}{36}=\frac{25}{36}
Add -4 to \frac{169}{36}.
\left(x+\frac{13}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}+\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{13}{6}=\frac{5}{6} x+\frac{13}{6}=-\frac{5}{6}
Simplify.
x=-\frac{4}{3} x=-3
Subtract \frac{13}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}