Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}=24-13
Subtract 13 from both sides.
3x^{2}=11
Subtract 13 from 24 to get 11.
x^{2}=\frac{11}{3}
Divide both sides by 3.
x=\frac{\sqrt{33}}{3} x=-\frac{\sqrt{33}}{3}
Take the square root of both sides of the equation.
3x^{2}+13-24=0
Subtract 24 from both sides.
3x^{2}-11=0
Subtract 24 from 13 to get -11.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-11\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-11\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-11\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{132}}{2\times 3}
Multiply -12 times -11.
x=\frac{0±2\sqrt{33}}{2\times 3}
Take the square root of 132.
x=\frac{0±2\sqrt{33}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{33}}{3}
Now solve the equation x=\frac{0±2\sqrt{33}}{6} when ± is plus.
x=-\frac{\sqrt{33}}{3}
Now solve the equation x=\frac{0±2\sqrt{33}}{6} when ± is minus.
x=\frac{\sqrt{33}}{3} x=-\frac{\sqrt{33}}{3}
The equation is now solved.