Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+28x-3+2
Combine 10x and 18x to get 28x.
3x^{2}+28x-1
Add -3 and 2 to get -1.
factor(3x^{2}+28x-3+2)
Combine 10x and 18x to get 28x.
factor(3x^{2}+28x-1)
Add -3 and 2 to get -1.
3x^{2}+28x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-28±\sqrt{28^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{784-4\times 3\left(-1\right)}}{2\times 3}
Square 28.
x=\frac{-28±\sqrt{784-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-28±\sqrt{784+12}}{2\times 3}
Multiply -12 times -1.
x=\frac{-28±\sqrt{796}}{2\times 3}
Add 784 to 12.
x=\frac{-28±2\sqrt{199}}{2\times 3}
Take the square root of 796.
x=\frac{-28±2\sqrt{199}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{199}-28}{6}
Now solve the equation x=\frac{-28±2\sqrt{199}}{6} when ± is plus. Add -28 to 2\sqrt{199}.
x=\frac{\sqrt{199}-14}{3}
Divide -28+2\sqrt{199} by 6.
x=\frac{-2\sqrt{199}-28}{6}
Now solve the equation x=\frac{-28±2\sqrt{199}}{6} when ± is minus. Subtract 2\sqrt{199} from -28.
x=\frac{-\sqrt{199}-14}{3}
Divide -28-2\sqrt{199} by 6.
3x^{2}+28x-1=3\left(x-\frac{\sqrt{199}-14}{3}\right)\left(x-\frac{-\sqrt{199}-14}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-14+\sqrt{199}}{3} for x_{1} and \frac{-14-\sqrt{199}}{3} for x_{2}.