Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

48x^{2}-24x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 48\times 24}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, -24 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 48\times 24}}{2\times 48}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-192\times 24}}{2\times 48}
Multiply -4 times 48.
x=\frac{-\left(-24\right)±\sqrt{576-4608}}{2\times 48}
Multiply -192 times 24.
x=\frac{-\left(-24\right)±\sqrt{-4032}}{2\times 48}
Add 576 to -4608.
x=\frac{-\left(-24\right)±24\sqrt{7}i}{2\times 48}
Take the square root of -4032.
x=\frac{24±24\sqrt{7}i}{2\times 48}
The opposite of -24 is 24.
x=\frac{24±24\sqrt{7}i}{96}
Multiply 2 times 48.
x=\frac{24+24\sqrt{7}i}{96}
Now solve the equation x=\frac{24±24\sqrt{7}i}{96} when ± is plus. Add 24 to 24i\sqrt{7}.
x=\frac{1+\sqrt{7}i}{4}
Divide 24+24i\sqrt{7} by 96.
x=\frac{-24\sqrt{7}i+24}{96}
Now solve the equation x=\frac{24±24\sqrt{7}i}{96} when ± is minus. Subtract 24i\sqrt{7} from 24.
x=\frac{-\sqrt{7}i+1}{4}
Divide 24-24i\sqrt{7} by 96.
x=\frac{1+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+1}{4}
The equation is now solved.
48x^{2}-24x+24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
48x^{2}-24x+24-24=-24
Subtract 24 from both sides of the equation.
48x^{2}-24x=-24
Subtracting 24 from itself leaves 0.
\frac{48x^{2}-24x}{48}=-\frac{24}{48}
Divide both sides by 48.
x^{2}+\left(-\frac{24}{48}\right)x=-\frac{24}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}-\frac{1}{2}x=-\frac{24}{48}
Reduce the fraction \frac{-24}{48} to lowest terms by extracting and canceling out 24.
x^{2}-\frac{1}{2}x=-\frac{1}{2}
Reduce the fraction \frac{-24}{48} to lowest terms by extracting and canceling out 24.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{7}{16}
Add -\frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{7}i}{4} x-\frac{1}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{1+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+1}{4}
Add \frac{1}{4} to both sides of the equation.