Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

3b^{2}a^{4}-3a^{2}b^{4}-\left(a^{2}-b^{2}\right)^{3}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Use the distributive property to multiply 3a^{2}b^{2} by a^{2}-b^{2}.
3b^{2}a^{4}-3a^{2}b^{4}-\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}b^{2}+3a^{2}\left(b^{2}\right)^{2}-\left(b^{2}\right)^{3}\right)+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-b^{2}\right)^{3}.
3b^{2}a^{4}-3a^{2}b^{4}-\left(a^{6}-3\left(a^{2}\right)^{2}b^{2}+3a^{2}\left(b^{2}\right)^{2}-\left(b^{2}\right)^{3}\right)+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
3b^{2}a^{4}-3a^{2}b^{4}-\left(a^{6}-3a^{4}b^{2}+3a^{2}\left(b^{2}\right)^{2}-\left(b^{2}\right)^{3}\right)+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
3b^{2}a^{4}-3a^{2}b^{4}-\left(a^{6}-3a^{4}b^{2}+3a^{2}b^{4}-\left(b^{2}\right)^{3}\right)+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
3b^{2}a^{4}-3a^{2}b^{4}-\left(a^{6}-3a^{4}b^{2}+3a^{2}b^{4}-b^{6}\right)+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
3b^{2}a^{4}-3a^{2}b^{4}-a^{6}+3a^{4}b^{2}-3a^{2}b^{4}+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To find the opposite of a^{6}-3a^{4}b^{2}+3a^{2}b^{4}-b^{6}, find the opposite of each term.
6b^{2}a^{4}-3a^{2}b^{4}-a^{6}-3a^{2}b^{4}+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Combine 3b^{2}a^{4} and 3a^{4}b^{2} to get 6b^{2}a^{4}.
6b^{2}a^{4}-6a^{2}b^{4}-a^{6}+b^{6}+\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Combine -3a^{2}b^{4} and -3a^{2}b^{4} to get -6a^{2}b^{4}.
6b^{2}a^{4}-6a^{2}b^{4}-a^{6}+b^{6}+\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Consider \left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6b^{2}a^{4}-6a^{2}b^{4}-a^{6}+b^{6}+a^{6}-\left(b^{3}\right)^{2}-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
6b^{2}a^{4}-6a^{2}b^{4}-a^{6}+b^{6}+a^{6}-b^{6}-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
6b^{2}a^{4}-6a^{2}b^{4}+b^{6}-b^{6}-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Combine -a^{6} and a^{6} to get 0.
6b^{2}a^{4}-6a^{2}b^{4}-6\left(a^{2}b+ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Combine b^{6} and -b^{6} to get 0.
6b^{2}a^{4}-6a^{2}b^{4}+\left(-6a^{2}b-6ab^{2}\right)\left(a^{2}b-ab^{2}\right)
Use the distributive property to multiply -6 by a^{2}b+ab^{2}.
6b^{2}a^{4}-6a^{2}b^{4}-6a^{4}b^{2}+6a^{2}b^{4}
Use the distributive property to multiply -6a^{2}b-6ab^{2} by a^{2}b-ab^{2} and combine like terms.
-6a^{2}b^{4}+6a^{2}b^{4}
Combine 6b^{2}a^{4} and -6a^{4}b^{2} to get 0.
0
Combine -6a^{2}b^{4} and 6a^{2}b^{4} to get 0.