Solve for x (complex solution)
x=-1
x=\frac{13+5\sqrt{3}i}{2}\approx 6.5+4.330127019i
x=\frac{-5\sqrt{3}i+13}{2}\approx 6.5-4.330127019i
Solve for x
x=-1
Graph
Share
Copied to clipboard
\left(x-4\right)^{3}=\frac{-375}{3}
Divide both sides by 3.
\left(x-4\right)^{3}=-125
Divide -375 by 3 to get -125.
x^{3}-12x^{2}+48x-64=-125
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-4\right)^{3}.
x^{3}-12x^{2}+48x-64+125=0
Add 125 to both sides.
x^{3}-12x^{2}+48x+61=0
Add -64 and 125 to get 61.
±61,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 61 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-13x+61=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-12x^{2}+48x+61 by x+1 to get x^{2}-13x+61. Solve the equation where the result equals to 0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 1\times 61}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -13 for b, and 61 for c in the quadratic formula.
x=\frac{13±\sqrt{-75}}{2}
Do the calculations.
x=\frac{-5i\sqrt{3}+13}{2} x=\frac{13+5i\sqrt{3}}{2}
Solve the equation x^{2}-13x+61=0 when ± is plus and when ± is minus.
x=-1 x=\frac{-5i\sqrt{3}+13}{2} x=\frac{13+5i\sqrt{3}}{2}
List all found solutions.
\left(x-4\right)^{3}=\frac{-375}{3}
Divide both sides by 3.
\left(x-4\right)^{3}=-125
Divide -375 by 3 to get -125.
x^{3}-12x^{2}+48x-64=-125
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-4\right)^{3}.
x^{3}-12x^{2}+48x-64+125=0
Add 125 to both sides.
x^{3}-12x^{2}+48x+61=0
Add -64 and 125 to get 61.
±61,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 61 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-13x+61=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-12x^{2}+48x+61 by x+1 to get x^{2}-13x+61. Solve the equation where the result equals to 0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 1\times 61}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -13 for b, and 61 for c in the quadratic formula.
x=\frac{13±\sqrt{-75}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=-1
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}