Solve for x
x=\frac{8\sqrt{3}}{3}+2\approx 6.618802154
x=-\frac{8\sqrt{3}}{3}+2\approx -2.618802154
Graph
Share
Copied to clipboard
3\left(x-2\right)^{2}-64+64=64
Add 64 to both sides of the equation.
3\left(x-2\right)^{2}=64
Subtracting 64 from itself leaves 0.
\frac{3\left(x-2\right)^{2}}{3}=\frac{64}{3}
Divide both sides by 3.
\left(x-2\right)^{2}=\frac{64}{3}
Dividing by 3 undoes the multiplication by 3.
x-2=\frac{8\sqrt{3}}{3} x-2=-\frac{8\sqrt{3}}{3}
Take the square root of both sides of the equation.
x-2-\left(-2\right)=\frac{8\sqrt{3}}{3}-\left(-2\right) x-2-\left(-2\right)=-\frac{8\sqrt{3}}{3}-\left(-2\right)
Add 2 to both sides of the equation.
x=\frac{8\sqrt{3}}{3}-\left(-2\right) x=-\frac{8\sqrt{3}}{3}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\frac{8\sqrt{3}}{3}+2
Subtract -2 from \frac{8\sqrt{3}}{3}.
x=-\frac{8\sqrt{3}}{3}+2
Subtract -2 from -\frac{8\sqrt{3}}{3}.
x=\frac{8\sqrt{3}}{3}+2 x=-\frac{8\sqrt{3}}{3}+2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}