Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\times 2^{2}x^{2}+5x+30=0
Expand \left(2x\right)^{2}.
3\times 4x^{2}+5x+30=0
Calculate 2 to the power of 2 and get 4.
12x^{2}+5x+30=0
Multiply 3 and 4 to get 12.
x=\frac{-5±\sqrt{5^{2}-4\times 12\times 30}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 5 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 12\times 30}}{2\times 12}
Square 5.
x=\frac{-5±\sqrt{25-48\times 30}}{2\times 12}
Multiply -4 times 12.
x=\frac{-5±\sqrt{25-1440}}{2\times 12}
Multiply -48 times 30.
x=\frac{-5±\sqrt{-1415}}{2\times 12}
Add 25 to -1440.
x=\frac{-5±\sqrt{1415}i}{2\times 12}
Take the square root of -1415.
x=\frac{-5±\sqrt{1415}i}{24}
Multiply 2 times 12.
x=\frac{-5+\sqrt{1415}i}{24}
Now solve the equation x=\frac{-5±\sqrt{1415}i}{24} when ± is plus. Add -5 to i\sqrt{1415}.
x=\frac{-\sqrt{1415}i-5}{24}
Now solve the equation x=\frac{-5±\sqrt{1415}i}{24} when ± is minus. Subtract i\sqrt{1415} from -5.
x=\frac{-5+\sqrt{1415}i}{24} x=\frac{-\sqrt{1415}i-5}{24}
The equation is now solved.
3\times 2^{2}x^{2}+5x+30=0
Expand \left(2x\right)^{2}.
3\times 4x^{2}+5x+30=0
Calculate 2 to the power of 2 and get 4.
12x^{2}+5x+30=0
Multiply 3 and 4 to get 12.
12x^{2}+5x=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
\frac{12x^{2}+5x}{12}=-\frac{30}{12}
Divide both sides by 12.
x^{2}+\frac{5}{12}x=-\frac{30}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{5}{12}x=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{5}{12}x+\left(\frac{5}{24}\right)^{2}=-\frac{5}{2}+\left(\frac{5}{24}\right)^{2}
Divide \frac{5}{12}, the coefficient of the x term, by 2 to get \frac{5}{24}. Then add the square of \frac{5}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{12}x+\frac{25}{576}=-\frac{5}{2}+\frac{25}{576}
Square \frac{5}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{12}x+\frac{25}{576}=-\frac{1415}{576}
Add -\frac{5}{2} to \frac{25}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{24}\right)^{2}=-\frac{1415}{576}
Factor x^{2}+\frac{5}{12}x+\frac{25}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{24}\right)^{2}}=\sqrt{-\frac{1415}{576}}
Take the square root of both sides of the equation.
x+\frac{5}{24}=\frac{\sqrt{1415}i}{24} x+\frac{5}{24}=-\frac{\sqrt{1415}i}{24}
Simplify.
x=\frac{-5+\sqrt{1415}i}{24} x=\frac{-\sqrt{1415}i-5}{24}
Subtract \frac{5}{24} from both sides of the equation.