Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-9=2\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 3 by x-3.
3x-9=\left(2x-2\right)\left(x+1\right)
Use the distributive property to multiply 2 by x-1.
3x-9=2x^{2}-2
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
3x-9-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-9-2x^{2}+2=0
Add 2 to both sides.
3x-7-2x^{2}=0
Add -9 and 2 to get -7.
-2x^{2}+3x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
Square 3.
x=\frac{-3±\sqrt{9+8\left(-7\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-3±\sqrt{9-56}}{2\left(-2\right)}
Multiply 8 times -7.
x=\frac{-3±\sqrt{-47}}{2\left(-2\right)}
Add 9 to -56.
x=\frac{-3±\sqrt{47}i}{2\left(-2\right)}
Take the square root of -47.
x=\frac{-3±\sqrt{47}i}{-4}
Multiply 2 times -2.
x=\frac{-3+\sqrt{47}i}{-4}
Now solve the equation x=\frac{-3±\sqrt{47}i}{-4} when ± is plus. Add -3 to i\sqrt{47}.
x=\frac{-\sqrt{47}i+3}{4}
Divide -3+i\sqrt{47} by -4.
x=\frac{-\sqrt{47}i-3}{-4}
Now solve the equation x=\frac{-3±\sqrt{47}i}{-4} when ± is minus. Subtract i\sqrt{47} from -3.
x=\frac{3+\sqrt{47}i}{4}
Divide -3-i\sqrt{47} by -4.
x=\frac{-\sqrt{47}i+3}{4} x=\frac{3+\sqrt{47}i}{4}
The equation is now solved.
3x-9=2\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 3 by x-3.
3x-9=\left(2x-2\right)\left(x+1\right)
Use the distributive property to multiply 2 by x-1.
3x-9=2x^{2}-2
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
3x-9-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-2x^{2}=-2+9
Add 9 to both sides.
3x-2x^{2}=7
Add -2 and 9 to get 7.
-2x^{2}+3x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+3x}{-2}=\frac{7}{-2}
Divide both sides by -2.
x^{2}+\frac{3}{-2}x=\frac{7}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{3}{2}x=\frac{7}{-2}
Divide 3 by -2.
x^{2}-\frac{3}{2}x=-\frac{7}{2}
Divide 7 by -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{7}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{47}{16}
Add -\frac{7}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=-\frac{47}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{47}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{47}i}{4} x-\frac{3}{4}=-\frac{\sqrt{47}i}{4}
Simplify.
x=\frac{3+\sqrt{47}i}{4} x=\frac{-\sqrt{47}i+3}{4}
Add \frac{3}{4} to both sides of the equation.