Solve for m
m=10
Share
Copied to clipboard
3\times \frac{4}{9}+\frac{2}{3}m-8=0
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{3\times 4}{9}+\frac{2}{3}m-8=0
Express 3\times \frac{4}{9} as a single fraction.
\frac{12}{9}+\frac{2}{3}m-8=0
Multiply 3 and 4 to get 12.
\frac{4}{3}+\frac{2}{3}m-8=0
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
\frac{4}{3}+\frac{2}{3}m-\frac{24}{3}=0
Convert 8 to fraction \frac{24}{3}.
\frac{4-24}{3}+\frac{2}{3}m=0
Since \frac{4}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{20}{3}+\frac{2}{3}m=0
Subtract 24 from 4 to get -20.
\frac{2}{3}m=\frac{20}{3}
Add \frac{20}{3} to both sides. Anything plus zero gives itself.
m=\frac{20}{3}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
m=\frac{20\times 3}{3\times 2}
Multiply \frac{20}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
m=\frac{20}{2}
Cancel out 3 in both numerator and denominator.
m=10
Divide 20 by 2 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}