Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(2x-10\right)\left(3x-30\right)=-5\left(3x+100\right)
Multiply 3 and 2 to get 6.
\left(12x-60\right)\left(3x-30\right)=-5\left(3x+100\right)
Use the distributive property to multiply 6 by 2x-10.
36x^{2}-540x+1800=-5\left(3x+100\right)
Use the distributive property to multiply 12x-60 by 3x-30 and combine like terms.
36x^{2}-540x+1800=-15x-500
Use the distributive property to multiply -5 by 3x+100.
36x^{2}-540x+1800+15x=-500
Add 15x to both sides.
36x^{2}-525x+1800=-500
Combine -540x and 15x to get -525x.
36x^{2}-525x+1800+500=0
Add 500 to both sides.
36x^{2}-525x+2300=0
Add 1800 and 500 to get 2300.
x=\frac{-\left(-525\right)±\sqrt{\left(-525\right)^{2}-4\times 36\times 2300}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -525 for b, and 2300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-525\right)±\sqrt{275625-4\times 36\times 2300}}{2\times 36}
Square -525.
x=\frac{-\left(-525\right)±\sqrt{275625-144\times 2300}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-525\right)±\sqrt{275625-331200}}{2\times 36}
Multiply -144 times 2300.
x=\frac{-\left(-525\right)±\sqrt{-55575}}{2\times 36}
Add 275625 to -331200.
x=\frac{-\left(-525\right)±15\sqrt{247}i}{2\times 36}
Take the square root of -55575.
x=\frac{525±15\sqrt{247}i}{2\times 36}
The opposite of -525 is 525.
x=\frac{525±15\sqrt{247}i}{72}
Multiply 2 times 36.
x=\frac{525+15\sqrt{247}i}{72}
Now solve the equation x=\frac{525±15\sqrt{247}i}{72} when ± is plus. Add 525 to 15i\sqrt{247}.
x=\frac{175+5\sqrt{247}i}{24}
Divide 525+15i\sqrt{247} by 72.
x=\frac{-15\sqrt{247}i+525}{72}
Now solve the equation x=\frac{525±15\sqrt{247}i}{72} when ± is minus. Subtract 15i\sqrt{247} from 525.
x=\frac{-5\sqrt{247}i+175}{24}
Divide 525-15i\sqrt{247} by 72.
x=\frac{175+5\sqrt{247}i}{24} x=\frac{-5\sqrt{247}i+175}{24}
The equation is now solved.
6\left(2x-10\right)\left(3x-30\right)=-5\left(3x+100\right)
Multiply 3 and 2 to get 6.
\left(12x-60\right)\left(3x-30\right)=-5\left(3x+100\right)
Use the distributive property to multiply 6 by 2x-10.
36x^{2}-540x+1800=-5\left(3x+100\right)
Use the distributive property to multiply 12x-60 by 3x-30 and combine like terms.
36x^{2}-540x+1800=-15x-500
Use the distributive property to multiply -5 by 3x+100.
36x^{2}-540x+1800+15x=-500
Add 15x to both sides.
36x^{2}-525x+1800=-500
Combine -540x and 15x to get -525x.
36x^{2}-525x=-500-1800
Subtract 1800 from both sides.
36x^{2}-525x=-2300
Subtract 1800 from -500 to get -2300.
\frac{36x^{2}-525x}{36}=-\frac{2300}{36}
Divide both sides by 36.
x^{2}+\left(-\frac{525}{36}\right)x=-\frac{2300}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}-\frac{175}{12}x=-\frac{2300}{36}
Reduce the fraction \frac{-525}{36} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{175}{12}x=-\frac{575}{9}
Reduce the fraction \frac{-2300}{36} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{175}{12}x+\left(-\frac{175}{24}\right)^{2}=-\frac{575}{9}+\left(-\frac{175}{24}\right)^{2}
Divide -\frac{175}{12}, the coefficient of the x term, by 2 to get -\frac{175}{24}. Then add the square of -\frac{175}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{175}{12}x+\frac{30625}{576}=-\frac{575}{9}+\frac{30625}{576}
Square -\frac{175}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{175}{12}x+\frac{30625}{576}=-\frac{6175}{576}
Add -\frac{575}{9} to \frac{30625}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{175}{24}\right)^{2}=-\frac{6175}{576}
Factor x^{2}-\frac{175}{12}x+\frac{30625}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{175}{24}\right)^{2}}=\sqrt{-\frac{6175}{576}}
Take the square root of both sides of the equation.
x-\frac{175}{24}=\frac{5\sqrt{247}i}{24} x-\frac{175}{24}=-\frac{5\sqrt{247}i}{24}
Simplify.
x=\frac{175+5\sqrt{247}i}{24} x=\frac{-5\sqrt{247}i+175}{24}
Add \frac{175}{24} to both sides of the equation.