3 \sqrt{ 6 } \times ( \frac{ (2- \sqrt{ 6 } )(3 \sqrt{ 6 } +9) }{ -27 }
Evaluate
2
Factor
2
Share
Copied to clipboard
3\sqrt{6}\times \frac{6\sqrt{6}+18-3\left(\sqrt{6}\right)^{2}-9\sqrt{6}}{-27}
Apply the distributive property by multiplying each term of 2-\sqrt{6} by each term of 3\sqrt{6}+9.
3\sqrt{6}\times \frac{6\sqrt{6}+18-3\times 6-9\sqrt{6}}{-27}
The square of \sqrt{6} is 6.
3\sqrt{6}\times \frac{6\sqrt{6}+18-18-9\sqrt{6}}{-27}
Multiply -3 and 6 to get -18.
3\sqrt{6}\times \frac{6\sqrt{6}-9\sqrt{6}}{-27}
Subtract 18 from 18 to get 0.
3\sqrt{6}\times \frac{-3\sqrt{6}}{-27}
Combine 6\sqrt{6} and -9\sqrt{6} to get -3\sqrt{6}.
3\sqrt{6}\times \frac{1}{9}\sqrt{6}
Divide -3\sqrt{6} by -27 to get \frac{1}{9}\sqrt{6}.
\frac{3}{9}\sqrt{6}\sqrt{6}
Multiply 3 and \frac{1}{9} to get \frac{3}{9}.
\frac{1}{3}\sqrt{6}\sqrt{6}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{3}\times 6
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{6}{3}
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
2
Divide 6 by 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}