Evaluate
\frac{9\sqrt{2}}{10}\approx 1.272792206
Share
Copied to clipboard
\frac{3\times 2\sqrt{3}\times \frac{\sqrt{3}}{4}}{5}\sqrt{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{6\sqrt{3}\times \frac{\sqrt{3}}{4}}{5}\sqrt{2}
Multiply 3 and 2 to get 6.
\frac{\frac{6\sqrt{3}}{4}\sqrt{3}}{5}\sqrt{2}
Express 6\times \frac{\sqrt{3}}{4} as a single fraction.
\frac{\frac{3}{2}\sqrt{3}\sqrt{3}}{5}\sqrt{2}
Divide 6\sqrt{3} by 4 to get \frac{3}{2}\sqrt{3}.
\frac{\frac{3}{2}\times 3}{5}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\frac{3\times 3}{2}}{5}\sqrt{2}
Express \frac{3}{2}\times 3 as a single fraction.
\frac{\frac{9}{2}}{5}\sqrt{2}
Multiply 3 and 3 to get 9.
\frac{9}{2\times 5}\sqrt{2}
Express \frac{\frac{9}{2}}{5} as a single fraction.
\frac{9}{10}\sqrt{2}
Multiply 2 and 5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}