Solve for x
x=1
x=-\frac{5}{13}\approx -0.384615385
Graph
Share
Copied to clipboard
3\sqrt{1-x^{2}}=2-2x
Subtract 2x from both sides of the equation.
\left(3\sqrt{1-x^{2}}\right)^{2}=\left(2-2x\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(2-2x\right)^{2}
Expand \left(3\sqrt{1-x^{2}}\right)^{2}.
9\left(\sqrt{1-x^{2}}\right)^{2}=\left(2-2x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(1-x^{2}\right)=\left(2-2x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
9-9x^{2}=\left(2-2x\right)^{2}
Use the distributive property to multiply 9 by 1-x^{2}.
9-9x^{2}=4-8x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
9-9x^{2}-4=-8x+4x^{2}
Subtract 4 from both sides.
5-9x^{2}=-8x+4x^{2}
Subtract 4 from 9 to get 5.
5-9x^{2}+8x=4x^{2}
Add 8x to both sides.
5-9x^{2}+8x-4x^{2}=0
Subtract 4x^{2} from both sides.
5-13x^{2}+8x=0
Combine -9x^{2} and -4x^{2} to get -13x^{2}.
-13x^{2}+8x+5=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-13\times 5=-65
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -13x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,65 -5,13
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -65.
-1+65=64 -5+13=8
Calculate the sum for each pair.
a=13 b=-5
The solution is the pair that gives sum 8.
\left(-13x^{2}+13x\right)+\left(-5x+5\right)
Rewrite -13x^{2}+8x+5 as \left(-13x^{2}+13x\right)+\left(-5x+5\right).
13x\left(-x+1\right)+5\left(-x+1\right)
Factor out 13x in the first and 5 in the second group.
\left(-x+1\right)\left(13x+5\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-\frac{5}{13}
To find equation solutions, solve -x+1=0 and 13x+5=0.
3\sqrt{1-1^{2}}+2\times 1=2
Substitute 1 for x in the equation 3\sqrt{1-x^{2}}+2x=2.
2=2
Simplify. The value x=1 satisfies the equation.
3\sqrt{1-\left(-\frac{5}{13}\right)^{2}}+2\left(-\frac{5}{13}\right)=2
Substitute -\frac{5}{13} for x in the equation 3\sqrt{1-x^{2}}+2x=2.
2=2
Simplify. The value x=-\frac{5}{13} satisfies the equation.
x=1 x=-\frac{5}{13}
List all solutions of 3\sqrt{1-x^{2}}=2-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}